A Combined Bayesian and Similarity-Based Approach for Predicting E. coli Biofilm Inhibition by Phenolic Natural Compounds

生物膜 相似性(几何) 贝叶斯概率 化学 计算生物学 立体化学 生物 细菌 人工智能 计算机科学 遗传学 图像(数学)
作者
Dmitri Stepanov,David Buchmann,Nadin Schultze,Gerhard Wolber,Katharina Schaufler,Sebastian Guenther,Vitaly Belik
出处
期刊:Journal of Natural Products [American Chemical Society]
卷期号:85 (10): 2255-2265 被引量:5
标识
DOI:10.1021/acs.jnatprod.2c00005
摘要

Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的觅山完成签到,获得积分10
刚刚
Rondab应助李琦采纳,获得30
1秒前
黄瓜双耳拌腐竹完成签到,获得积分10
1秒前
zby发布了新的文献求助10
1秒前
Rondab应助ljc采纳,获得10
2秒前
3秒前
ranjeah完成签到 ,获得积分10
3秒前
4秒前
层积云关注了科研通微信公众号
6秒前
6秒前
7秒前
8秒前
hushidi发布了新的文献求助10
10秒前
胖头鱼完成签到,获得积分10
12秒前
车厘子发布了新的文献求助10
13秒前
Akim应助研究生吗喽采纳,获得10
14秒前
花椒小透明完成签到,获得积分20
15秒前
wangqing发布了新的文献求助10
16秒前
小王发布了新的文献求助10
19秒前
20秒前
21秒前
桐桐应助HonamC采纳,获得10
23秒前
橙浅完成签到,获得积分10
24秒前
炙热莫言完成签到,获得积分20
24秒前
ling_lz发布了新的文献求助10
25秒前
我是老大应助超人采纳,获得10
27秒前
27秒前
zhangyu应助三毛采纳,获得10
27秒前
CipherSage应助郭郭采纳,获得10
28秒前
炙热莫言发布了新的文献求助20
29秒前
淼吉发布了新的文献求助10
29秒前
29秒前
lvxinyan完成签到,获得积分10
30秒前
31秒前
32秒前
归尘发布了新的文献求助10
33秒前
等待的夜香完成签到,获得积分10
35秒前
Chimmy发布了新的文献求助10
36秒前
YAO发布了新的文献求助10
36秒前
water应助薛定谔的猫采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712