已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Combined Bayesian and Similarity-Based Approach for Predicting E. coli Biofilm Inhibition by Phenolic Natural Compounds

生物膜 相似性(几何) 贝叶斯概率 化学 计算生物学 立体化学 生物 细菌 人工智能 计算机科学 遗传学 图像(数学)
作者
Dmitri Stepanov,David Buchmann,Nadin Schultze,Gerhard Wolber,Katharina Schaufler,Sebastian Guenther,Vitaly Belik
出处
期刊:Journal of Natural Products [American Chemical Society]
卷期号:85 (10): 2255-2265 被引量:5
标识
DOI:10.1021/acs.jnatprod.2c00005
摘要

Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助荞麦面采纳,获得10
4秒前
Cloud完成签到,获得积分10
4秒前
4秒前
ai豆的鱼发布了新的文献求助10
4秒前
林lin完成签到,获得积分10
8秒前
可耐的思远完成签到 ,获得积分10
8秒前
科研通AI2S应助清风明月采纳,获得10
10秒前
健康幸福平安完成签到,获得积分10
11秒前
JUST完成签到,获得积分10
12秒前
14秒前
15秒前
17秒前
小马甲应助单纯的雅香采纳,获得10
17秒前
17秒前
充电宝应助hphhh采纳,获得10
17秒前
疯狂的师发布了新的文献求助30
18秒前
18秒前
20秒前
Hosea发布了新的文献求助10
22秒前
莫言发布了新的文献求助10
22秒前
24秒前
Aria_chao发布了新的文献求助10
25秒前
善学以致用应助tingsHHH采纳,获得10
26秒前
26秒前
28秒前
浅尝离白应助奶茶麻辣烫采纳,获得30
29秒前
波波头丶发布了新的文献求助10
30秒前
31秒前
疯狂的师完成签到,获得积分10
33秒前
Hello应助慧敏采纳,获得10
34秒前
35秒前
35秒前
波波头丶完成签到,获得积分10
36秒前
啵赞的龟丝儿完成签到,获得积分10
39秒前
小米发布了新的文献求助10
42秒前
42秒前
丘比特应助tomboy采纳,获得10
43秒前
feliciaaa完成签到,获得积分10
44秒前
44秒前
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825904
捐赠科研通 2454242
什么是DOI,文献DOI怎么找? 1306225
科研通“疑难数据库(出版商)”最低求助积分说明 627679
版权声明 601503