A Combined Bayesian and Similarity-Based Approach for Predicting E. coli Biofilm Inhibition by Phenolic Natural Compounds

生物膜 相似性(几何) 贝叶斯概率 化学 计算生物学 立体化学 生物 细菌 人工智能 计算机科学 遗传学 图像(数学)
作者
Dmitri Stepanov,David Buchmann,Nadin Schultze,Gerhard Wolber,Katharina Schaufler,Sebastian Guenther,Vitaly Belik
出处
期刊:Journal of Natural Products [American Chemical Society]
卷期号:85 (10): 2255-2265 被引量:5
标识
DOI:10.1021/acs.jnatprod.2c00005
摘要

Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
2秒前
Edward发布了新的文献求助10
3秒前
3秒前
海中有月发布了新的文献求助10
3秒前
happy发布了新的文献求助10
3秒前
mostspecial完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
twostand应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
Lucas应助zhogwe采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Mark应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
Hello应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得30
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
小程同学发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300