Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23关闭了23文献求助
刚刚
刚刚
小二郎应助怕黑明雪采纳,获得30
1秒前
1127发布了新的文献求助10
1秒前
1秒前
ff'f'f'f'f'f'f完成签到,获得积分10
1秒前
小白菜阿唐完成签到,获得积分10
1秒前
YkW发布了新的文献求助10
1秒前
111发布了新的文献求助10
2秒前
zuigu完成签到,获得积分10
2秒前
2秒前
cc完成签到,获得积分10
3秒前
3秒前
Nomb1发布了新的文献求助10
3秒前
3秒前
Wang完成签到,获得积分20
4秒前
我是老大应助学渣向下采纳,获得10
4秒前
浮游应助kk采纳,获得10
4秒前
搜集达人应助123采纳,获得10
4秒前
4秒前
浮游应助贵金属LiLi采纳,获得10
5秒前
温暖的德地完成签到,获得积分10
5秒前
碳土不凡完成签到 ,获得积分10
5秒前
5秒前
鸡腿子发布了新的文献求助10
5秒前
6秒前
wangjia完成签到 ,获得积分10
6秒前
结合疫苗研究员完成签到,获得积分10
6秒前
BBBrucella完成签到,获得积分10
6秒前
漂亮夏兰发布了新的文献求助10
6秒前
小郭发布了新的文献求助10
6秒前
留胡子的邑完成签到,获得积分10
7秒前
chenxxx发布了新的文献求助10
7秒前
星辰大海应助大魔王波波采纳,获得10
8秒前
9秒前
不爱吃魔芋完成签到,获得积分10
9秒前
帅气蓝发布了新的文献求助10
9秒前
9秒前
王一完成签到,获得积分20
9秒前
冷静宛海完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744