Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸书琴完成签到 ,获得积分10
2秒前
大Doctor陈发布了新的文献求助30
2秒前
3秒前
jxas完成签到,获得积分10
5秒前
柒邪完成签到,获得积分10
6秒前
6秒前
Aurora完成签到,获得积分10
6秒前
8秒前
8秒前
柒邪发布了新的文献求助10
9秒前
笃定完成签到,获得积分10
9秒前
9秒前
10秒前
目土土发布了新的文献求助10
11秒前
12秒前
toumai发布了新的文献求助10
14秒前
笃定发布了新的文献求助10
14秒前
李健的小迷弟应助Michael采纳,获得10
15秒前
muri完成签到,获得积分10
15秒前
细心的老头完成签到,获得积分10
16秒前
大Doctor陈完成签到,获得积分10
16秒前
16秒前
重重重飞完成签到 ,获得积分10
16秒前
16秒前
2233完成签到,获得积分10
17秒前
无辜念文完成签到,获得积分10
18秒前
小紫完成签到,获得积分10
18秒前
guoll发布了新的文献求助10
20秒前
丘比特应助目土土采纳,获得10
20秒前
khh完成签到 ,获得积分10
20秒前
敬老院N号应助科研通管家采纳,获得20
21秒前
斯文败类应助科研通管家采纳,获得30
21秒前
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
小黄人发布了新的文献求助30
22秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011