已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
目光所致完成签到,获得积分10
2秒前
彼得发布了新的文献求助10
3秒前
32发布了新的文献求助10
4秒前
4秒前
师忆夏完成签到,获得积分10
6秒前
雪阳发布了新的文献求助20
7秒前
7秒前
英勇的沉鱼完成签到 ,获得积分10
7秒前
顾矜应助messi0731采纳,获得30
7秒前
久顾南川完成签到 ,获得积分10
7秒前
gyyy完成签到 ,获得积分10
9秒前
冰棒比冰冰完成签到 ,获得积分10
9秒前
kkr完成签到,获得积分20
10秒前
10秒前
周敏杰完成签到,获得积分10
10秒前
KK完成签到,获得积分10
14秒前
共享精神应助刘萌清采纳,获得10
14秒前
挑片岛屿发布了新的文献求助10
15秒前
16秒前
上官若男应助神医magical采纳,获得10
17秒前
Tuniverse_完成签到 ,获得积分10
21秒前
想毕业的笑笑完成签到,获得积分20
22秒前
22秒前
彭于晏应助默默的采纳,获得10
23秒前
研友_ngX12Z发布了新的文献求助10
23秒前
24秒前
充电宝应助福多多采纳,获得10
24秒前
量子星尘发布了新的文献求助10
27秒前
Akebi完成签到,获得积分10
28秒前
28秒前
大大怪完成签到,获得积分20
28秒前
海荷完成签到,获得积分10
28秒前
贾克斯发布了新的文献求助10
29秒前
29秒前
科研白完成签到 ,获得积分10
31秒前
31秒前
32秒前
33秒前
专一的蛋挞完成签到,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702