Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨雨雨雨发布了新的文献求助10
刚刚
夜琉璃应助淡淡的南风采纳,获得100
刚刚
刚刚
1秒前
cherish发布了新的文献求助10
1秒前
1秒前
舒服的从阳完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
开心渣渣发布了新的文献求助10
3秒前
无情南琴发布了新的文献求助10
3秒前
3秒前
kaida完成签到,获得积分10
3秒前
yyy发布了新的文献求助30
4秒前
4秒前
量子星尘发布了新的文献求助20
4秒前
5秒前
WSH应助duoduoduo采纳,获得10
5秒前
Summer夏天完成签到,获得积分10
5秒前
隐形曼青应助非理性人群采纳,获得10
5秒前
cherish完成签到,获得积分10
6秒前
lym完成签到,获得积分10
6秒前
专一的小馒头完成签到,获得积分10
6秒前
Aile。发布了新的文献求助10
6秒前
WUHUDASM发布了新的文献求助10
6秒前
6秒前
汉堡包应助早日毕业采纳,获得10
7秒前
英姑应助隐形宛白采纳,获得10
7秒前
7秒前
单纯的晓刚完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
蔡继海发布了新的文献求助10
8秒前
裴荣华完成签到,获得积分10
8秒前
玺白白发布了新的文献求助50
8秒前
yoyo20012623完成签到,获得积分10
9秒前
跃天杜发布了新的文献求助10
9秒前
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581495
求助须知:如何正确求助?哪些是违规求助? 4665821
关于积分的说明 14758879
捐赠科研通 4607710
什么是DOI,文献DOI怎么找? 2528346
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466507