亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
99668完成签到,获得积分10
3秒前
4秒前
8秒前
10秒前
nini发布了新的文献求助10
12秒前
小二郎应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮浮世世应助科研通管家采纳,获得30
19秒前
浮游应助科研通管家采纳,获得10
19秒前
寒玉完成签到,获得积分10
20秒前
23秒前
25秒前
25秒前
矮小的蜗牛完成签到,获得积分10
28秒前
Zilch发布了新的文献求助10
32秒前
38秒前
40秒前
所所应助一叶舟采纳,获得10
41秒前
迷路冰颜完成签到 ,获得积分10
42秒前
1nooooo完成签到 ,获得积分10
45秒前
48秒前
矮小的蜗牛关注了科研通微信公众号
50秒前
思源应助runfen采纳,获得10
50秒前
50秒前
wynne313完成签到 ,获得积分10
52秒前
梨凉完成签到,获得积分10
52秒前
王加冕完成签到 ,获得积分10
56秒前
shusen完成签到,获得积分10
57秒前
1分钟前
徐志豪发布了新的文献求助10
1分钟前
泡泡完成签到 ,获得积分10
1分钟前
顺心成仁完成签到 ,获得积分10
1分钟前
1分钟前
fang完成签到,获得积分0
1分钟前
奋斗鸡翅完成签到,获得积分20
1分钟前
选择性哑巴完成签到 ,获得积分10
1分钟前
酷酷幻梦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464