亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助吕敬瑶采纳,获得10
1秒前
汉堡包应助吕敬瑶采纳,获得10
1秒前
orixero应助吕敬瑶采纳,获得10
1秒前
李爱国应助吕敬瑶采纳,获得10
1秒前
今后应助吕敬瑶采纳,获得10
1秒前
在水一方应助吕敬瑶采纳,获得10
1秒前
JamesPei应助吕敬瑶采纳,获得10
1秒前
清飏完成签到,获得积分10
2秒前
5秒前
7秒前
Kelkin完成签到,获得积分10
9秒前
9秒前
1chen完成签到 ,获得积分10
10秒前
结实灭男发布了新的文献求助10
10秒前
信含雨完成签到 ,获得积分10
11秒前
11秒前
11秒前
Bluebellnar发布了新的文献求助30
11秒前
14秒前
于浩完成签到 ,获得积分10
14秒前
Jeffery完成签到,获得积分10
14秒前
Jeffery发布了新的文献求助10
17秒前
TTT完成签到,获得积分10
20秒前
26秒前
Orange应助忧心的迎天采纳,获得10
28秒前
xrl完成签到 ,获得积分10
29秒前
38秒前
Criminology34举报谯殿艺求助涉嫌违规
38秒前
Dreamchaser完成签到,获得积分10
39秒前
41秒前
ziyue发布了新的文献求助10
44秒前
ziyue完成签到,获得积分10
49秒前
ccc完成签到 ,获得积分10
50秒前
大学生完成签到 ,获得积分10
51秒前
行走完成签到,获得积分10
52秒前
chenllxx完成签到 ,获得积分10
53秒前
58秒前
bless完成签到 ,获得积分10
59秒前
于富强发布了新的文献求助10
1分钟前
soda完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634505
求助须知:如何正确求助?哪些是违规求助? 4731390
关于积分的说明 14988643
捐赠科研通 4792266
什么是DOI,文献DOI怎么找? 2559428
邀请新用户注册赠送积分活动 1519756
关于科研通互助平台的介绍 1479872