Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助kk采纳,获得10
1秒前
任夏完成签到,获得积分10
1秒前
赵芳完成签到,获得积分10
1秒前
妙海完成签到,获得积分10
1秒前
laoleigang发布了新的文献求助10
1秒前
传奇3应助surain采纳,获得10
1秒前
2秒前
luckygg完成签到 ,获得积分20
2秒前
善学以致用应助一只然采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
cheng发布了新的文献求助10
3秒前
senna完成签到,获得积分10
3秒前
若什么至完成签到,获得积分10
5秒前
魔人啾啾完成签到,获得积分10
5秒前
十八完成签到,获得积分10
5秒前
5秒前
6秒前
zhengzhao完成签到,获得积分10
6秒前
6秒前
无事小神仙完成签到 ,获得积分10
6秒前
Chan完成签到,获得积分10
7秒前
fbwg完成签到,获得积分10
7秒前
JM_meng发布了新的文献求助10
8秒前
万芳应助高兴的以菱采纳,获得20
8秒前
青山完成签到,获得积分10
9秒前
bodao完成签到,获得积分10
9秒前
杨秋月发布了新的文献求助10
9秒前
丫头完成签到,获得积分10
10秒前
从容的狗完成签到,获得积分10
10秒前
worrying91完成签到,获得积分10
10秒前
米诺子完成签到,获得积分10
10秒前
天开眼完成签到,获得积分10
10秒前
小薛完成签到,获得积分10
11秒前
笨笨慕山完成签到,获得积分10
11秒前
cheng发布了新的文献求助10
12秒前
暴躁火火火完成签到 ,获得积分10
12秒前
笑开口完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934