Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的博发布了新的文献求助10
刚刚
陈灵敏完成签到,获得积分10
刚刚
流沙完成签到,获得积分10
1秒前
1秒前
贾硕士发布了新的文献求助10
1秒前
糖吵粒子完成签到,获得积分10
1秒前
2秒前
研友_VZG7GZ应助Rivers采纳,获得10
2秒前
现代的雅彤完成签到,获得积分10
2秒前
ruengyu发布了新的文献求助10
2秒前
2秒前
七个小矮人完成签到,获得积分10
2秒前
温大全发布了新的文献求助10
2秒前
baling发布了新的文献求助200
2秒前
dfm完成签到,获得积分10
3秒前
3秒前
3秒前
狄从灵发布了新的文献求助10
3秒前
4秒前
xx完成签到,获得积分10
4秒前
哪吒之魔童闹海完成签到,获得积分10
4秒前
Aurora发布了新的文献求助10
4秒前
CodeCraft应助melody采纳,获得10
5秒前
5秒前
5秒前
fd163c应助文件撤销了驳回
5秒前
柔情公蚂蚁完成签到,获得积分20
5秒前
科研通AI2S应助Yu采纳,获得10
6秒前
没所谓完成签到,获得积分10
6秒前
6秒前
剑兰先生完成签到,获得积分10
6秒前
2微恙完成签到,获得积分10
6秒前
6秒前
7秒前
李志发布了新的文献求助10
7秒前
懒骨头兄应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
liang完成签到,获得积分10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251