Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想干活应助一只啾咪采纳,获得10
1秒前
1秒前
情怀应助弯弯月亮采纳,获得10
2秒前
2秒前
搜集达人应助偷看星星采纳,获得10
2秒前
zzz完成签到,获得积分10
2秒前
tao发布了新的文献求助10
3秒前
大大明童鞋完成签到,获得积分10
4秒前
多情怜蕾发布了新的文献求助10
4秒前
5秒前
123456完成签到 ,获得积分10
5秒前
无定发布了新的文献求助10
5秒前
阿曼尼完成签到 ,获得积分10
6秒前
6秒前
苏苏完成签到,获得积分10
7秒前
Dan菇凉发布了新的文献求助10
7秒前
kaiX发布了新的文献求助10
8秒前
LEE佳完成签到 ,获得积分10
8秒前
科研通AI5应助哒哒哒采纳,获得10
8秒前
成就的鹤完成签到,获得积分10
8秒前
8秒前
zipi完成签到,获得积分10
8秒前
燕儿应助132采纳,获得30
8秒前
8秒前
9秒前
乐乐应助咚咚采纳,获得10
9秒前
苹果摇伽完成签到,获得积分10
9秒前
上官若男应助大大明童鞋采纳,获得10
10秒前
yyyfff应助Orochimaru采纳,获得10
10秒前
10秒前
独特的秋应助淡淡的冰颜采纳,获得30
10秒前
Akim应助sang采纳,获得10
10秒前
10秒前
燕真完成签到,获得积分10
11秒前
小远远应助仁爱帆布鞋采纳,获得20
12秒前
无定完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
zqy完成签到,获得积分10
12秒前
LJJ完成签到,获得积分10
12秒前
虚幻的雪巧完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723