清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助FXe采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
28秒前
Bonnienuit完成签到 ,获得积分10
30秒前
搜集达人应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
34秒前
田田完成签到 ,获得积分10
47秒前
吱吱发布了新的文献求助10
1分钟前
吱吱完成签到,获得积分10
1分钟前
高高从霜完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
坚强紫山完成签到,获得积分10
2分钟前
xiaowangwang完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
V_I_G完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
jiang发布了新的文献求助10
3分钟前
文献属于所有科研人完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
可爱沛蓝完成签到 ,获得积分10
3分钟前
jiang完成签到 ,获得积分10
4分钟前
无情的踏歌应助bc采纳,获得300
4分钟前
无情的踏歌应助白华苍松采纳,获得20
4分钟前
科研啄木鸟完成签到 ,获得积分10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
1437594843完成签到 ,获得积分10
5分钟前
安青兰完成签到 ,获得积分10
6分钟前
orixero应助科研通管家采纳,获得10
6分钟前
cheng完成签到,获得积分10
6分钟前
面汤完成签到 ,获得积分10
6分钟前
soilbeginner应助ceeray23采纳,获得20
6分钟前
852应助烂漫念文采纳,获得10
6分钟前
晴莹完成签到 ,获得积分10
6分钟前
NexusExplorer应助ceeray23采纳,获得20
7分钟前
无情的踏歌应助白华苍松采纳,获得20
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584787
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614474
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531