Improvements to a MODIS global terrestrial evapotranspiration algorithm

蒸散量 涡度相关法 环境科学 白天 焊剂(冶金) 算法 土地覆盖 显热 遥感 大气科学 植被(病理学) 通量网 气象学 数学 地质学 土地利用 地理 生态系统 生态学 生物 医学 材料科学 土木工程 病理 工程类 冶金
作者
Qiaozhen Mu,Maosheng Zhao,Steven W. Running
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:115 (8): 1781-1800 被引量:2347
标识
DOI:10.1016/j.rse.2011.02.019
摘要

MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519–536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10–30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大侠发布了新的文献求助10
刚刚
魁梧的乐天完成签到,获得积分20
刚刚
冯度翩翩完成签到,获得积分10
1秒前
科研通AI2S应助satchzhao采纳,获得10
1秒前
jijizz完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
小马甲应助ChiDaiOLD采纳,获得10
2秒前
2秒前
鳗鱼灵寒发布了新的文献求助10
3秒前
shatang发布了新的文献求助10
3秒前
lesyeuxdexx完成签到 ,获得积分10
5秒前
6秒前
程琳完成签到,获得积分20
7秒前
8秒前
卓哥发布了新的文献求助10
8秒前
科研通AI5应助sansan采纳,获得10
9秒前
9秒前
9秒前
脑洞疼应助杰森斯坦虎采纳,获得10
9秒前
11秒前
12秒前
研友_QQC完成签到,获得积分10
12秒前
NeuroWhite完成签到,获得积分10
12秒前
12秒前
搜索v完成签到,获得积分10
13秒前
liuchuck完成签到 ,获得积分10
13秒前
13秒前
13秒前
猫独秀完成签到,获得积分10
13秒前
15秒前
buno应助yuefeng采纳,获得10
15秒前
yiming完成签到,获得积分10
15秒前
落落发布了新的文献求助10
16秒前
清秋若月完成签到 ,获得积分10
16秒前
16秒前
呵呵呵呵完成签到,获得积分10
17秒前
17秒前
远方发布了新的文献求助10
18秒前
zxc111关注了科研通微信公众号
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808