已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fabric Defect Detection Method Combing Image Pyramid and Direction Template

人工智能 计算机视觉 棱锥(几何) 计算机科学 模式识别(心理学) 特征(语言学) 图像(数学) 特征检测(计算机视觉) 相似性(几何) 图像纹理 块(置换群论) 彩色图像 图像处理 数学 哲学 语言学 几何学
作者
Huosheng Xie,Yafeng Zhang,Zesen Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 182320-182334 被引量:28
标识
DOI:10.1109/access.2019.2959880
摘要

Focusing on the fabric defect detection with periodic-pattern and pure-color texture, an algorithm based on Direction Template and Image Pyramid is proposed. The detection process is divided into two stages: model training and defect localization. During the model training stage, we construct an Image Pyramid for each fabric image that does not contain any defects. Then, Stacked De-noising Convolutional Auto-Encoder (SDCAE) is used for image reconstruction, its training sets are created by randomly extracting image blocks from image pyramid, which makes the feature information of the image block more abundant and the reconstruction effect of the model more remarkable. During the defect localization stage, the image to be detected is divided into a number of blocks, and is reconstructed by using the trained SDCAE model. Then, the candidate defective image blocks are roughly located by using the Structural Similarity Index Measurement after the image reconstruction. Subsequently, direction template is introduced to solve the problem of fabric deformation caused by factors such as fabric production environment and photographic angle. We select the direction template of the images to be detected, filter the candidate defective blocks, and further reduce false detection rate of the proposed algorithm. Furthermore, there is no need to calculate size of periodic-pattern during detection for periodic textured fabric. The algorithm is also suitable for defect detection for pure-color fabrics. The experimental results show that the proposed algorithm can achieve better defect localization accuracy, and receive better results in detection of pure-color fabrics, compared with traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别总熬夜发布了新的文献求助10
1秒前
1秒前
小菜鸡发布了新的文献求助10
7秒前
9秒前
yxm完成签到 ,获得积分10
10秒前
14秒前
raziel发布了新的文献求助10
14秒前
16秒前
www完成签到 ,获得积分10
17秒前
小菜鸡发布了新的文献求助10
18秒前
bird完成签到,获得积分10
46秒前
隐形曼青应助aristego采纳,获得50
47秒前
Persistence完成签到,获得积分10
47秒前
raziel完成签到,获得积分10
48秒前
老张完成签到,获得积分10
49秒前
畜牧笑笑完成签到,获得积分10
50秒前
Persistence发布了新的文献求助10
51秒前
Jasper应助图图大耳朵采纳,获得10
55秒前
aiyangyang完成签到 ,获得积分10
59秒前
希望天下0贩的0应助YK采纳,获得10
1分钟前
顾矜应助一只西瓜茶采纳,获得10
1分钟前
1分钟前
眯眯眼的鞋垫完成签到,获得积分10
1分钟前
在水一方应助Russell采纳,获得10
1分钟前
酥鱼完成签到,获得积分10
1分钟前
1分钟前
X7发布了新的文献求助10
1分钟前
鲤鱼初柳完成签到 ,获得积分10
1分钟前
ynn完成签到 ,获得积分10
1分钟前
1分钟前
今后应助朴素访琴采纳,获得10
1分钟前
CodeCraft应助Persistence采纳,获得10
1分钟前
1分钟前
嗯哼举报涨涨涨求助涉嫌违规
1分钟前
学渣路过完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
研友_Z1xbgn发布了新的文献求助10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271337
求助须知:如何正确求助?哪些是违规求助? 2910530
关于积分的说明 8354762
捐赠科研通 2580942
什么是DOI,文献DOI怎么找? 1403960
科研通“疑难数据库(出版商)”最低求助积分说明 656038
邀请新用户注册赠送积分活动 635468