Fabric Defect Detection Method Combing Image Pyramid and Direction Template

人工智能 计算机视觉 棱锥(几何) 计算机科学 模式识别(心理学) 特征(语言学) 图像(数学) 特征检测(计算机视觉) 相似性(几何) 图像纹理 块(置换群论) 彩色图像 图像处理 数学 哲学 语言学 几何学
作者
Huosheng Xie,Yafeng Zhang,Zesen Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 182320-182334 被引量:28
标识
DOI:10.1109/access.2019.2959880
摘要

Focusing on the fabric defect detection with periodic-pattern and pure-color texture, an algorithm based on Direction Template and Image Pyramid is proposed. The detection process is divided into two stages: model training and defect localization. During the model training stage, we construct an Image Pyramid for each fabric image that does not contain any defects. Then, Stacked De-noising Convolutional Auto-Encoder (SDCAE) is used for image reconstruction, its training sets are created by randomly extracting image blocks from image pyramid, which makes the feature information of the image block more abundant and the reconstruction effect of the model more remarkable. During the defect localization stage, the image to be detected is divided into a number of blocks, and is reconstructed by using the trained SDCAE model. Then, the candidate defective image blocks are roughly located by using the Structural Similarity Index Measurement after the image reconstruction. Subsequently, direction template is introduced to solve the problem of fabric deformation caused by factors such as fabric production environment and photographic angle. We select the direction template of the images to be detected, filter the candidate defective blocks, and further reduce false detection rate of the proposed algorithm. Furthermore, there is no need to calculate size of periodic-pattern during detection for periodic textured fabric. The algorithm is also suitable for defect detection for pure-color fabrics. The experimental results show that the proposed algorithm can achieve better defect localization accuracy, and receive better results in detection of pure-color fabrics, compared with traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPPERn发布了新的文献求助10
1秒前
我要瘦发布了新的文献求助10
1秒前
solobang发布了新的文献求助10
1秒前
Sean发布了新的文献求助10
1秒前
Harry完成签到,获得积分10
2秒前
yxy999完成签到,获得积分10
2秒前
年华发布了新的文献求助10
2秒前
WZH123456完成签到,获得积分10
3秒前
orixero应助大胆盼兰采纳,获得10
3秒前
4秒前
4秒前
陈某某完成签到,获得积分10
4秒前
卡皮巴丘完成签到 ,获得积分10
5秒前
周少完成签到,获得积分10
5秒前
陶一二完成签到,获得积分10
7秒前
7秒前
7秒前
DocZhao完成签到 ,获得积分10
8秒前
apt完成签到,获得积分10
8秒前
8秒前
Three完成签到,获得积分10
9秒前
如果多年后完成签到 ,获得积分10
9秒前
SYLH应助solobang采纳,获得10
10秒前
SYLH应助solobang采纳,获得10
10秒前
灰色与青完成签到,获得积分10
10秒前
852应助幸福胡萝卜采纳,获得10
10秒前
虞无声应助年华采纳,获得10
10秒前
11秒前
香菜发布了新的文献求助10
12秒前
hf发布了新的文献求助10
12秒前
14秒前
爱听歌长颈鹿完成签到,获得积分20
14秒前
852应助抓恐龙采纳,获得10
14秒前
15秒前
小小鱼完成签到,获得积分10
15秒前
15秒前
单薄的小鸽子完成签到,获得积分10
16秒前
17秒前
charon完成签到,获得积分20
17秒前
bkagyin应助fff采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678