Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors

超级电容器 材料科学 碳化 化学工程 纳米技术 碳纤维 功率密度 氢氧化钾 复合材料 复合数 电容 功率(物理) 扫描电子显微镜 电极 工程类 量子力学 物理 化学 物理化学
作者
Guoli Zhang,Taotao Guan,Jinli Qiao,Jianlong Wang,Kaixi Li
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:26: 119-128 被引量:121
标识
DOI:10.1016/j.ensm.2019.12.038
摘要

Abstract Doped quasi-two-dimensional carbons with layer-stacked porous architecture and chemically functionalized surface are strongly appealing for high-energy supercapacitors, but there are daunting challenges to synthesize them through a cost-efficient and eco-friendly path. Herein, N/S dual-doped stacked carbon nanosheets (D-SCN) is first synthesized from coal tar pitch, a cheap coking by-product, beginning with a controlled molecular radical-polymerization initiated by 2,3-dimethyl-2,3-diphenylbutane, followed by a one-step carbonization-activation process in presence of potassium benzoate and N,N′-diphenylthiourea. As-obtained D-SCN with reasonable densification shares a well-designed layer-stacked topology texture, hierarchical interconnected porous structure and N/S dual-doped surface, which work together to harvest high supercapacitive performance. The D-SCN delivers a maximal specific capacitance of 458 ​F ​g−1, which is considerably higher than most of previously reported for other carbon materials. As-assembled asymmetric all-solid-state supercapacitor with a wide voltage range of 0–1.8 ​V takes on a volumetric energy density of 27 ​W ​h ​L−1 at a power density of 296 ​W ​L−1 with fading capacitance of merely 5.9% after 20000 cycles. The route advocated here for preparing pitch-based nanocarbons opens up new horizons in exploring large-scale preparation of electrode materials suitable for narrow spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wan12138完成签到,获得积分10
刚刚
1秒前
张中山发布了新的文献求助10
1秒前
南风歌初发布了新的文献求助10
1秒前
adamchris应助AlexLXJ采纳,获得10
2秒前
华仔应助LX采纳,获得10
3秒前
小二郎应助xm采纳,获得10
3秒前
3秒前
4秒前
NexusExplorer应助玖玖采纳,获得10
4秒前
保奔完成签到,获得积分10
4秒前
6秒前
6秒前
等待发布了新的文献求助10
7秒前
祖佳完成签到,获得积分10
7秒前
wan12138发布了新的文献求助10
8秒前
小二郎应助lucky采纳,获得10
8秒前
CCsouljump完成签到 ,获得积分10
8秒前
梦想飞翔发布了新的文献求助10
9秒前
10秒前
linzedd发布了新的文献求助10
10秒前
kaede完成签到,获得积分10
11秒前
我是老大应助杰杰大叔采纳,获得10
11秒前
12秒前
丘比特应助迷路的幼南采纳,获得10
12秒前
lzn完成签到,获得积分20
13秒前
14秒前
15秒前
科目三应助爱笑的天空采纳,获得10
15秒前
15秒前
xuexuexixi123完成签到 ,获得积分10
15秒前
17秒前
平淡的冰巧完成签到,获得积分10
17秒前
17秒前
浮游应助志不在科研采纳,获得10
18秒前
two发布了新的文献求助10
19秒前
懒洋洋完成签到 ,获得积分10
20秒前
JL发布了新的文献求助10
20秒前
Eddy完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160