亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features

计算机科学 嵌入 对偶图 图嵌入 折线图 图形 块图 路宽 理论计算机科学 组合数学 人工智能 数学
作者
Hong Chen,Hisashi Koga
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-14 被引量:62
标识
DOI:10.1007/978-3-030-36718-3_1
摘要

Recently, several techniques to learn the embedding for a given graph dataset have been proposed. Among them, Graph2vec is significant in that it unsupervisedly learns the embedding of entire graphs which is useful for graph classification. This paper develops an algorithm which improves Graph2vec. First, we point out two limitations of Graph2vec: (1) Edge labels cannot be handled and (2) Graph2vec does not always preserve structural information enough to evaluate the structural similarity, because it bundles the node label information and the structural information in extracting subgraphs. Our algorithm overcomes these limitations by exploiting the line graphs (edge-to-vertex dual graphs) of given graphs. Specifically, it complements either the edge label information or the structural information which Graph2vec misses with the embeddings of the line graphs. Our method is named as GL2vec (Graph and Line graph to vector) because it concatenates the embedding of an original graph to that of the corresponding line graph. Experimentally, GL2vec achieves significant improvements in graph classification task over Graph2vec for many benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Jenny采纳,获得10
刚刚
完美世界应助yunshui采纳,获得10
2秒前
alter_mu发布了新的文献求助10
3秒前
天凉王破完成签到 ,获得积分10
9秒前
12秒前
19秒前
yunshui发布了新的文献求助10
19秒前
Timelapse应助科研通管家采纳,获得10
22秒前
37秒前
44秒前
54秒前
啦啦啦发布了新的文献求助10
57秒前
ding应助若宫伊芙采纳,获得30
1分钟前
1分钟前
研友_8WbP4Z发布了新的文献求助10
1分钟前
啦啦啦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
1分钟前
平常囧完成签到,获得积分10
2分钟前
若宫伊芙发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Jenny发布了新的文献求助10
2分钟前
田様应助小飞鼠爱丽丝采纳,获得10
2分钟前
景清发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
科目三应助简单的银耳汤采纳,获得10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
景清完成签到,获得积分10
2分钟前
义气的元绿完成签到,获得积分10
2分钟前
粗暴的坤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
nihao完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491