材料科学
阻燃剂
复合材料
纳米纤维素
热稳定性
可燃性
保温
纳米纤维
气凝胶
纳米复合材料
多孔性
纤维素
化学工程
制作
热导率
图层(电子)
病理
替代医学
工程类
医学
作者
Shengyang Zhou,Varvara Apostolopoulou‐Kalkavoura,Marcus Vinícius Tavares da Costa,Lennart Bergström,Maria Strømme,Chao Xu
标识
DOI:10.1007/s40820-019-0343-4
摘要
Abstract Metal–organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The cross-linking gives the aerogels high mechanical strength but superelasticity (80% maximum recoverable strain, high specific compression modulus of ~ 200 MPa cm 3 g −1 , and specific stress of ~ 100 MPa cm 3 g −1 ). The resultant lightweight aerogels have a cellular network structure and hierarchical porosity, which render the aerogels with relatively low thermal conductivity of ~ 40 mW m −1 K −1 . The hydrophobic, thermally stable MOF nanolayers wrapped around the CNFs result in good moisture resistance and fire retardancy. This study demonstrates that MOFs can be used as efficient thermal insulation and flame-retardant materials. It presents a pathway for the design of thermally insulating, superelastic fire-retardant nanocomposites based on MOFs and nanocellulose.
科研通智能强力驱动
Strongly Powered by AbleSci AI