Long-term exposure to fine particulate matter relates with incident myocardial infarction (MI) risks and post-MI mortality: A meta-analysis

微粒 心肌梗塞 出版偏见 危险系数 入射(几何) 人口 荟萃分析 比例危险模型 内科学 医学 置信区间 环境卫生 生物 生态学 物理 光学
作者
Wentao Zhu,Jiajie Cai,Yu-Chen Hu,Haodan Zhang,Xiao Han,Huiqiu Zheng,Jing Wu
出处
期刊:Chemosphere [Elsevier]
卷期号:267: 128903-128903 被引量:22
标识
DOI:10.1016/j.chemosphere.2020.128903
摘要

Air pollution has become a global challenge, and a growing number of studies have suggested possible relationships between long-term exposure to fine particulate matter (PM2.5) and risks of cardiovascular events, specifically, myocardial infarction (MI). However, the recently reported results were inconsistent. We thus performed a meta-analysis and sought to assess whether long-term exposure to PM2.5 relates with incident MI risks and post-MI mortality. EMBASE, Web of Science and PubMed were searched for all potentially eligible studies published before August 2, 2020 using a combination of keywords related to PM2.5 exposure, its long-term effects and myocardial infarction. Key information was extracted, and calculated hazard ratio (HR) values were combined by selecting corresponding models according to heterogeneity test. A sensitivity analysis and a publication bias assessment were also performed to determine the reliability of the results. Of the initially identified 2100 citations, 12 studies met our inclusion criteria and observed a total population of approximately 7.2 million. Pooled estimates (per 10 μg/m3 increase) indicated a statistically significant association between long-term PM2.5 exposure and MI incidence (HR = 1.10, 95% CI: 1.02–1.18) or post-MI mortality (HR = 1.07, 95% CI: 1.04–1.09). Results for MI incidence from Egger’s linear regression method (P = 0.515) and Begg’s test (P = 0.711) showed no obvious publication bias. Our quantitative analysis reveals a significant link between long-term PM2.5 exposure and greater MI incidence risks or higher post-MI mortality. Our findings may therefore have implications for individual protection and policy support to improve public health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeah完成签到,获得积分10
1秒前
Akim应助health采纳,获得10
1秒前
1秒前
菲菲发布了新的文献求助10
1秒前
SherlockJia完成签到,获得积分10
2秒前
星期八发布了新的文献求助10
2秒前
子木完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助aa采纳,获得30
2秒前
慕青应助爱听歌的映天采纳,获得10
2秒前
~桃完成签到,获得积分10
2秒前
3秒前
Ava应助懒羊羊采纳,获得10
3秒前
给好评发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
俏皮的聪展完成签到,获得积分10
4秒前
Djtc发布了新的文献求助20
4秒前
莫筱铭发布了新的文献求助30
5秒前
剑K发布了新的文献求助10
5秒前
吴妮妮发布了新的文献求助10
6秒前
6秒前
小马甲应助烫什么鱼采纳,获得10
6秒前
lvlv完成签到,获得积分10
6秒前
医学小王完成签到 ,获得积分10
7秒前
7秒前
chris应助大鱼采纳,获得10
7秒前
wxnice完成签到,获得积分10
7秒前
7秒前
8秒前
温婉的断天完成签到 ,获得积分10
8秒前
行者无疆完成签到,获得积分10
8秒前
霸气秀发布了新的文献求助10
8秒前
8秒前
xyc完成签到,获得积分10
8秒前
LL完成签到 ,获得积分10
9秒前
甜甜元槐完成签到,获得积分10
9秒前
Leexxxhaoo完成签到,获得积分10
9秒前
liujiahao完成签到,获得积分10
10秒前
jiji发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579