PSO+: A new particle swarm optimization algorithm for constrained problems

多群优化 数学优化 趋同(经济学) 帝国主义竞争算法 元优化 局部最优 萤火虫算法 水准点(测量) 群体智能 混合算法(约束满足) 收敛速度 无导数优化
作者
Manoela Kohler,Marley Vellasco,Ricardo Tanscheit
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:85: 105865-105865 被引量:56
标识
DOI:10.1016/j.asoc.2019.105865
摘要

The Particle Swarm Optimization algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. Current PSO algorithms that deal with constraints only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle. This approach may make it infeasible to optimize certain problems, especially real ones. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The proposed algorithm uses a feasibility repair operator and two swarms to ensure there will always be a swarm whose particles fully respect every constraint. A new particle update method is also proposed to insert diversity into the swarm and improve search-space coverage, allowing the search-space border to be exploited as well, which is particularly convenient when the optimization involves active constraints in global optimum. Two heuristics are proposed to initialize a feasible swarm with the purpose of speeding up the initialization mechanism and ensuring diversity at the starting point of the optimization process. Furthermore, a neighborhood topology is proposed to minimize premature convergence. The proposed algorithm was tested for twenty-four benchmark functions, as well as in a real reservoir drainage plan optimization problem. Results attest that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
zoe完成签到,获得积分10
刚刚
滴答滴完成签到 ,获得积分10
刚刚
dtcao完成签到,获得积分20
刚刚
笨笨的外套完成签到,获得积分10
1秒前
缓慢的王完成签到,获得积分10
2秒前
周一一完成签到,获得积分10
2秒前
Libra完成签到,获得积分10
2秒前
2秒前
一一完成签到,获得积分10
2秒前
3秒前
执着黑米完成签到 ,获得积分10
3秒前
3秒前
浪费完成签到 ,获得积分10
3秒前
4秒前
嘎嘎完成签到,获得积分20
4秒前
Jackson_Cai完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
天天下文献完成签到 ,获得积分10
6秒前
6秒前
6秒前
温暖书雪完成签到,获得积分10
6秒前
FunnyL发布了新的文献求助10
6秒前
嘟嘟发布了新的文献求助10
7秒前
orixero应助晕倒一下采纳,获得10
7秒前
英俊水池完成签到,获得积分10
7秒前
溪水完成签到 ,获得积分10
7秒前
飞蚁完成签到,获得积分10
7秒前
YY完成签到,获得积分10
7秒前
8秒前
9秒前
chengli完成签到,获得积分10
9秒前
岁岁完成签到 ,获得积分10
9秒前
tangyong完成签到,获得积分10
10秒前
Japrin完成签到,获得积分10
10秒前
星辰大海完成签到,获得积分10
11秒前
charon完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883