PSO+: A new particle swarm optimization algorithm for constrained problems

多群优化 数学优化 趋同(经济学) 帝国主义竞争算法 元优化 局部最优 萤火虫算法 水准点(测量) 群体智能 混合算法(约束满足) 收敛速度 无导数优化
作者
Manoela Kohler,Marley Vellasco,Ricardo Tanscheit
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:85: 105865-105865 被引量:56
标识
DOI:10.1016/j.asoc.2019.105865
摘要

The Particle Swarm Optimization algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. Current PSO algorithms that deal with constraints only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle. This approach may make it infeasible to optimize certain problems, especially real ones. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The proposed algorithm uses a feasibility repair operator and two swarms to ensure there will always be a swarm whose particles fully respect every constraint. A new particle update method is also proposed to insert diversity into the swarm and improve search-space coverage, allowing the search-space border to be exploited as well, which is particularly convenient when the optimization involves active constraints in global optimum. Two heuristics are proposed to initialize a feasible swarm with the purpose of speeding up the initialization mechanism and ensuring diversity at the starting point of the optimization process. Furthermore, a neighborhood topology is proposed to minimize premature convergence. The proposed algorithm was tested for twenty-four benchmark functions, as well as in a real reservoir drainage plan optimization problem. Results attest that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十年完成签到 ,获得积分10
2秒前
lalalapa666完成签到,获得积分10
2秒前
sue完成签到,获得积分10
2秒前
笑点低的泥猴桃完成签到,获得积分10
2秒前
swsx1317完成签到,获得积分10
2秒前
3秒前
自然紫山完成签到,获得积分10
3秒前
在水一方应助Wdd采纳,获得10
3秒前
yiyi完成签到,获得积分10
3秒前
火狐狸kc完成签到,获得积分10
4秒前
SwampMan完成签到 ,获得积分10
5秒前
Seiswan完成签到,获得积分10
5秒前
5秒前
研友_nPPdan完成签到,获得积分10
6秒前
陈明宇关注了科研通微信公众号
6秒前
6秒前
yanm完成签到,获得积分10
6秒前
cistronic完成签到,获得积分10
7秒前
无语的沛春完成签到,获得积分10
7秒前
老刘完成签到,获得积分10
8秒前
小橙子完成签到,获得积分10
8秒前
闪闪的发布了新的文献求助10
8秒前
chen完成签到,获得积分10
8秒前
puff完成签到,获得积分10
8秒前
9秒前
frank完成签到,获得积分10
10秒前
Yuan完成签到,获得积分10
10秒前
PG完成签到 ,获得积分10
10秒前
YRRRR完成签到 ,获得积分10
11秒前
朴素青寒发布了新的文献求助10
11秒前
Jeremy King发布了新的文献求助10
11秒前
天Q完成签到,获得积分10
11秒前
12秒前
weixin112233完成签到,获得积分10
12秒前
7777完成签到,获得积分20
13秒前
小葡萄完成签到 ,获得积分10
13秒前
13秒前
13秒前
123完成签到,获得积分10
13秒前
温柔寒梅完成签到 ,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044