亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PSO+: A new particle swarm optimization algorithm for constrained problems

多群优化 数学优化 趋同(经济学) 帝国主义竞争算法 元优化 局部最优 萤火虫算法 水准点(测量) 群体智能 混合算法(约束满足) 收敛速度 无导数优化
作者
Manoela Kohler,Marley Vellasco,Ricardo Tanscheit
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:85: 105865-105865 被引量:56
标识
DOI:10.1016/j.asoc.2019.105865
摘要

The Particle Swarm Optimization algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. Current PSO algorithms that deal with constraints only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle. This approach may make it infeasible to optimize certain problems, especially real ones. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The proposed algorithm uses a feasibility repair operator and two swarms to ensure there will always be a swarm whose particles fully respect every constraint. A new particle update method is also proposed to insert diversity into the swarm and improve search-space coverage, allowing the search-space border to be exploited as well, which is particularly convenient when the optimization involves active constraints in global optimum. Two heuristics are proposed to initialize a feasible swarm with the purpose of speeding up the initialization mechanism and ensuring diversity at the starting point of the optimization process. Furthermore, a neighborhood topology is proposed to minimize premature convergence. The proposed algorithm was tested for twenty-four benchmark functions, as well as in a real reservoir drainage plan optimization problem. Results attest that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
卡卡卡发布了新的文献求助10
10秒前
听闻墨笙完成签到 ,获得积分10
47秒前
C9完成签到 ,获得积分10
1分钟前
感性的夜玉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
打打应助外向板栗采纳,获得10
2分钟前
2分钟前
2分钟前
外向板栗发布了新的文献求助10
2分钟前
丘比特应助qz采纳,获得10
2分钟前
FashionBoy应助外向板栗采纳,获得10
2分钟前
清心淡如水完成签到,获得积分10
3分钟前
Otter完成签到,获得积分10
3分钟前
winkyyang完成签到 ,获得积分10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
qdlsc发布了新的文献求助10
3分钟前
4分钟前
酚酞v发布了新的文献求助10
4分钟前
华仔应助天降采纳,获得10
4分钟前
乐乐应助coldstork采纳,获得10
4分钟前
4分钟前
4分钟前
456完成签到,获得积分10
4分钟前
安青兰完成签到 ,获得积分10
4分钟前
coldstork发布了新的文献求助10
4分钟前
456发布了新的文献求助20
4分钟前
爆米花应助Gavin采纳,获得10
4分钟前
整齐乐巧完成签到,获得积分10
4分钟前
coldstork完成签到,获得积分10
4分钟前
5分钟前
Gavin发布了新的文献求助10
5分钟前
牛马_完成签到,获得积分10
5分钟前
打打应助酚酞v采纳,获得10
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
jerry完成签到,获得积分10
6分钟前
英姑应助thousandlong采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126089
求助须知:如何正确求助?哪些是违规求助? 2776277
关于积分的说明 7729714
捐赠科研通 2431733
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622601
版权声明 600392