Dual-Collaborative Fusion Model for Multispectral and Panchromatic Image Fusion

全色胶片 多光谱图像 计算机科学 锐化 人工智能 图像融合 融合 图像分辨率 模式识别(心理学) 特征(语言学) 嵌入 计算机视觉 图像(数学) 语言学 哲学
作者
Yinghui Xing,Shuyuan Yang,Zhixi Feng,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:21
标识
DOI:10.1109/tgrs.2020.3036625
摘要

The aim of multispectral (MS) and panchromatic (PAN) image fusion is to obtain an MS image that has high resolution in both spectral and spatial domains. During the fusion process, there are two important issues, i.e., spectral information preservation and spatial information enhancement. In this article, we propose a dual-collaborative fusion model that considers not only the spectral correlation collaboration but also the spatial-spectral collaboration. First, the features of PAN and MS images are extracted by a shared feature embedding network. Then, in order to enhance the spatial details, the PAN features are decomposed into four subbands, and the collaborative relationships among subbands are fully explored to refine the features. After the refinement of the subbands, the high-frequency components are directly taken as the inputs of the reconstruction network, while the low-frequency components are transformed by the guidance generation network to accomplish the spatial-spectral collaboration and also make preparations for the spectral adjustment. To explore the spectral correlation collaboration, a novel graph convolutional network is designed for the modulation of intraspectral relationships. Finally, the adjusted MS features are combined with the high-frequency components of PAN features to reconstruct the high-resolution MS image. Experimental results show that the proposed method outperforms traditional state-of-the-art pan-sharpening methods as well as the available deep learning-based ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜啵啵完成签到,获得积分10
1秒前
小周完成签到,获得积分10
1秒前
Louki完成签到 ,获得积分10
1秒前
温暖的颜演完成签到 ,获得积分10
2秒前
yudandan@CJLU发布了新的文献求助10
3秒前
科研小民工应助_呱_采纳,获得50
3秒前
愉快盼曼完成签到,获得积分20
3秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
13679165979发布了新的文献求助10
5秒前
温暖的钻石完成签到,获得积分10
5秒前
科研通AI5应助赖道之采纳,获得10
5秒前
6秒前
苏卿应助Eric采纳,获得10
6秒前
思源应助hhzz采纳,获得10
7秒前
红红完成签到,获得积分10
10秒前
瑶一瑶发布了新的文献求助10
10秒前
NexusExplorer应助刘鹏宇采纳,获得10
10秒前
roselau完成签到,获得积分10
10秒前
yudandan@CJLU完成签到,获得积分10
11秒前
11秒前
半山完成签到,获得积分10
15秒前
吹泡泡的红豆完成签到 ,获得积分10
16秒前
研友_89eBO8完成签到 ,获得积分10
16秒前
隐形曼青应助ZeJ采纳,获得10
16秒前
16秒前
隐形曼青应助温暖的钻石采纳,获得10
17秒前
Khr1stINK发布了新的文献求助10
18秒前
123cxj发布了新的文献求助10
19秒前
星辰大海应助红红采纳,获得10
19秒前
sweetbearm应助小周采纳,获得10
20秒前
科研通AI5应助赖道之采纳,获得10
20秒前
21秒前
HonamC完成签到,获得积分10
22秒前
十三十四十五完成签到,获得积分10
23秒前
潇洒的问夏完成签到 ,获得积分10
25秒前
无声瀑布完成签到,获得积分10
25秒前
Bingtao_Lian完成签到 ,获得积分10
26秒前
小布丁完成签到 ,获得积分10
26秒前
竹筏过海应助季生采纳,获得30
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808