多光谱图像
主成分分析
偏最小二乘回归
支持向量机
人工智能
模式识别(心理学)
残余物
数学
计算机科学
统计
算法
作者
Wei Liu,Xue Xu,Changhong Liu,Lei Zheng
摘要
The detection of authenticity is essential to the development and management of Thai jasmine rice industry. In this study, the multispectral imaging system (405–970 nm) was used for the detection of adulteration in Thai jasmine rice combined with chemometric methods including principal component analysis (PCA), partial least squares (PLS), least squares-support vector machines (LS-SVM), and backpropagation neural network (BPNN). Three varieties of rice that were similar to Thai jasmine rice in appearance were selected to perform the classification and quantitative prediction experiments by multispectral images. For the classification experiment, four varieties of rice samples could be easily classified with accuracy achieved to 92% by the BPNN model. For the quantitative prediction of adulteration proportion experiments, the results showed that, among the different chemometric methods, LS-SVM achieved the best prediction performance comparing the results of coefficient of determination, root-mean-square error (RMSEP), bias, and residual predictive deviation (RPD). It can be concluded that multispectral imaging technology with chemometric methods can be applied in the rapid and nondestructive detection of authenticity of Thai jasmine rice.
科研通智能强力驱动
Strongly Powered by AbleSci AI