自愈水凝胶
再生(生物学)
脊髓损伤
细胞外基质
控制释放
材料科学
脊髓
神经科学
纳米技术
细胞生物学
生物
高分子化学
作者
D. Silva,Rui A. Sousa,António J. Salgado
标识
DOI:10.1016/j.mtbio.2021.100093
摘要
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
科研通智能强力驱动
Strongly Powered by AbleSci AI