亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Fusion Feature Representation Learning With Hard Mining Center-Triplet Loss for Person Re-Identification

联营 计算机科学 判别式 人工智能 模式识别(心理学) 特征(语言学) 特征学习 特征提取 代表(政治) 公制(单位) 机器学习 哲学 政治学 经济 政治 法学 语言学 运营管理
作者
Cairong Zhao,Xinbi Lv,Zhang Zhang,Wangmeng Zuo,Jun Wu,Duoqian Miao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 3180-3195 被引量:84
标识
DOI:10.1109/tmm.2020.2972125
摘要

Person re-identification (Re-ID) is a challenging task in the field of computer vision and focuses on matching people across images from different cameras. The extraction of robust feature representations from pedestrian images through CNNs with a single deterministic pooling operation is problematic as the features in real pedestrian images are complex and diverse. To address this problem, we propose a novel center-triplet (CT) model that combines the learning of robust feature representation and the optimization of metric loss function. Firstly, we design a fusion feature learning network (FFLN) with a novel fusion strategy consisting of max pooling and average pooling. Instead of adopting a single deterministic pooling operation, the FFLN combines two pooling operations that can learn high response values, bright features, and low response values, discriminative features simultaneously. Our model obtains more discriminative fusion features by adaptively learning the weights of the features learned by the corresponding pooling operations. In addition, we design a hard mining center-triplet loss (HCTL), a novel improved triplet loss, which effectively optimizes the intra/inter-class distance and reduces the cost of computing and mining hard training samples simultaneously, thereby enhancing the learning of robust feature representation. Finally, we proved our method can learn robust and discriminative feature representations for complex pedestrian images in real scenes. The experimental results also illustrate that our method achieves an 81.8% mAP and a 93.8% rank-1 accuracy on Market1501, a 68.2% mAP and an 83.3% rank-1 accuracy on DukeMTMC-ReID, and a 43.6% mAP and a 74.3% rank-1 accuracy on MSMT17, outperforming most state-of-the-art methods and achieving better performance for person re-identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
hs是坏蛋完成签到,获得积分10
9秒前
19秒前
41秒前
1分钟前
古月发布了新的文献求助10
1分钟前
烟花应助鹅鹅鹅采纳,获得30
1分钟前
1分钟前
鹅鹅鹅完成签到,获得积分10
1分钟前
鹅鹅鹅发布了新的文献求助30
1分钟前
1分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
安静的谷丝完成签到,获得积分10
2分钟前
蓝色隐莲完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
爆米花应助Su采纳,获得10
3分钟前
科研通AI2S应助天才小熊猫采纳,获得10
3分钟前
3分钟前
Su发布了新的文献求助10
3分钟前
3分钟前
Su完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Wang完成签到 ,获得积分20
3分钟前
4分钟前
4分钟前
CCD完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
魔幻诗兰发布了新的文献求助10
4分钟前
天才小熊猫完成签到,获得积分10
4分钟前
4分钟前
魔幻诗兰完成签到,获得积分10
4分钟前
LJL完成签到 ,获得积分10
4分钟前
4分钟前
劳健龙完成签到 ,获得积分10
5分钟前
5分钟前
111完成签到 ,获得积分10
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229679
求助须知:如何正确求助?哪些是违规求助? 2877234
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621806