Exercise recommendation based on knowledge concept prediction

计算机科学 新颖性 基线(sea) 协同过滤 机器学习 人工智能 追踪 推荐系统 滤波器(信号处理) 心理学 海洋学 地质学 社会心理学 计算机视觉 操作系统
作者
Zhengyang Wu,Ming Li,Yong Tang,Qingyu Liang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:210: 106481-106481 被引量:48
标识
DOI:10.1016/j.knosys.2020.106481
摘要

Good recommendation for difficulty exercises can effectively help to point the students/users in the right direction, and potentially empower their learning interests. It is however challenging to select the exercises with reasonable difficulty for students as they have different learning status and the size of exercise bank is quite large. The classic collaborative filtering (CF) based recommendation methods rely heavily on the similarities among students or exercises, leading to recommend exercises with mismatched difficulty. This paper proposes a novel exercise recommendation method, which uses Recurrent Neural Networks (RNNs) to predict the coverage of knowledge concepts, and uses Deep Knowledge Tracing (DKT) to predict students' mastery level of knowledge concepts based on the student's exercise answer records. The predictive results are utilized to filter the exercises; therefore, a subset of exercise bank is generated. As such, a complete list of recommended exercises can be obtained by solving an optimization problem. Extensive experimental studies show that our proposed approach has advantages over some existing baseline methods, not only in terms of the evaluation of difficulty of recommended exercises, but also the diversity and novelty of the recommendation lists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan完成签到,获得积分10
1秒前
科研菜菜完成签到,获得积分10
2秒前
2秒前
匆匆走过应助完美时间线采纳,获得10
3秒前
meat12应助chen_hebo采纳,获得10
4秒前
Tianju发布了新的文献求助50
5秒前
wd发布了新的文献求助30
5秒前
6秒前
6秒前
wu8577应助lan采纳,获得10
7秒前
hhh发布了新的文献求助30
8秒前
8秒前
Zhai发布了新的文献求助10
9秒前
10秒前
Dr大壮发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助30
12秒前
hulin_zjxu完成签到,获得积分10
14秒前
14秒前
王一山发布了新的文献求助20
14秒前
哭泣乌完成签到,获得积分10
16秒前
yhbk完成签到 ,获得积分10
17秒前
猪猪hero应助是述不是沭采纳,获得10
17秒前
zhaoxiao完成签到 ,获得积分10
17秒前
mary发布了新的文献求助10
18秒前
梓墨完成签到,获得积分10
18秒前
18秒前
20秒前
Orange应助Dr_zhangkai采纳,获得30
21秒前
zhaoxiao发布了新的文献求助10
22秒前
Jason完成签到,获得积分10
23秒前
深情安青应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得30
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
LaTeXer应助科研通管家采纳,获得50
24秒前
风清扬应助科研通管家采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019