Exercise recommendation based on knowledge concept prediction

计算机科学 新颖性 基线(sea) 协同过滤 机器学习 人工智能 追踪 推荐系统 滤波器(信号处理) 心理学 海洋学 地质学 社会心理学 计算机视觉 操作系统
作者
Zhengyang Wu,Ming Li,Yong Tang,Qingyu Liang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:210: 106481-106481 被引量:63
标识
DOI:10.1016/j.knosys.2020.106481
摘要

Good recommendation for difficulty exercises can effectively help to point the students/users in the right direction, and potentially empower their learning interests. It is however challenging to select the exercises with reasonable difficulty for students as they have different learning status and the size of exercise bank is quite large. The classic collaborative filtering (CF) based recommendation methods rely heavily on the similarities among students or exercises, leading to recommend exercises with mismatched difficulty. This paper proposes a novel exercise recommendation method, which uses Recurrent Neural Networks (RNNs) to predict the coverage of knowledge concepts, and uses Deep Knowledge Tracing (DKT) to predict students' mastery level of knowledge concepts based on the student's exercise answer records. The predictive results are utilized to filter the exercises; therefore, a subset of exercise bank is generated. As such, a complete list of recommended exercises can be obtained by solving an optimization problem. Extensive experimental studies show that our proposed approach has advantages over some existing baseline methods, not only in terms of the evaluation of difficulty of recommended exercises, but also the diversity and novelty of the recommendation lists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得30
刚刚
子车茗应助科研通管家采纳,获得30
刚刚
喽喽完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
foxp3完成签到,获得积分10
1秒前
走过的风发布了新的文献求助10
2秒前
开心香岚完成签到,获得积分10
2秒前
臧晓蕾发布了新的文献求助10
4秒前
爱听歌的夏烟完成签到,获得积分10
4秒前
时尚的冰棍儿完成签到 ,获得积分0
5秒前
喽喽发布了新的文献求助30
5秒前
张小小发布了新的文献求助10
7秒前
果果应助高胜寒采纳,获得10
7秒前
7秒前
华仔应助livo采纳,获得10
7秒前
方向发布了新的文献求助10
8秒前
Sylvia完成签到,获得积分10
8秒前
orixero应助af采纳,获得10
9秒前
Linda琳完成签到,获得积分10
9秒前
Leyna完成签到,获得积分20
10秒前
Yangpan发布了新的文献求助10
11秒前
YangZhang发布了新的文献求助30
12秒前
13秒前
背后的小白菜完成签到,获得积分10
15秒前
叶玉雯完成签到 ,获得积分20
16秒前
充电小子完成签到 ,获得积分10
17秒前
粗犷的凌兰完成签到,获得积分10
17秒前
Akim应助方向采纳,获得10
18秒前
烟花应助木中一采纳,获得10
19秒前
李健应助走过的风采纳,获得10
19秒前
19秒前
ASHhan111完成签到,获得积分10
19秒前
叶玉雯关注了科研通微信公众号
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430