Exercise recommendation based on knowledge concept prediction

计算机科学 新颖性 基线(sea) 协同过滤 机器学习 人工智能 追踪 推荐系统 滤波器(信号处理) 心理学 计算机视觉 社会心理学 海洋学 操作系统 地质学
作者
Zhengyang Wu,Ming Li,Yong Tang,Qingyu Liang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:210: 106481-106481 被引量:72
标识
DOI:10.1016/j.knosys.2020.106481
摘要

Good recommendation for difficulty exercises can effectively help to point the students/users in the right direction, and potentially empower their learning interests. It is however challenging to select the exercises with reasonable difficulty for students as they have different learning status and the size of exercise bank is quite large. The classic collaborative filtering (CF) based recommendation methods rely heavily on the similarities among students or exercises, leading to recommend exercises with mismatched difficulty. This paper proposes a novel exercise recommendation method, which uses Recurrent Neural Networks (RNNs) to predict the coverage of knowledge concepts, and uses Deep Knowledge Tracing (DKT) to predict students' mastery level of knowledge concepts based on the student's exercise answer records. The predictive results are utilized to filter the exercises; therefore, a subset of exercise bank is generated. As such, a complete list of recommended exercises can be obtained by solving an optimization problem. Extensive experimental studies show that our proposed approach has advantages over some existing baseline methods, not only in terms of the evaluation of difficulty of recommended exercises, but also the diversity and novelty of the recommendation lists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho应助sparrow采纳,获得10
1秒前
1秒前
YaRu应助翟小灰采纳,获得20
2秒前
共享精神应助柒玉染采纳,获得10
4秒前
南风发布了新的文献求助10
4秒前
zsp完成签到,获得积分10
5秒前
标致爆米花完成签到 ,获得积分10
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
元谷雪应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
czm关注了科研通微信公众号
9秒前
遇事不决睡大觉完成签到,获得积分10
9秒前
今后应助天天采纳,获得80
10秒前
BowieHuang应助buno采纳,获得30
12秒前
12秒前
13秒前
13秒前
13秒前
柒玉染发布了新的文献求助10
16秒前
研友_VZG7GZ应助自觉的溪灵采纳,获得10
17秒前
chaogeshiren完成签到,获得积分10
17秒前
18秒前
布布发布了新的文献求助10
18秒前
18秒前
jasmineee发布了新的文献求助10
19秒前
漂亮月亮发布了新的文献求助30
19秒前
Stan发布了新的文献求助10
20秒前
20秒前
赘婿应助不信人间有白头采纳,获得10
21秒前
21秒前
24秒前
24秒前
kk雯发布了新的文献求助10
24秒前
TCMning发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527