Service-Oriented Energy-Latency Tradeoff for IoT Task Partial Offloading in MEC-Enhanced Multi-RAT Networks

计算机科学 移动边缘计算 能源消耗 计算卸载 服务质量 延迟(音频) 计算机网络 分布式计算 边缘计算 高效能源利用 无线 物联网 服务器 嵌入式系统 电信 生物 电气工程 工程类 生态学
作者
Meng Qin,Nan Cheng,Zewei Jing,Tingting Yang,Wenchao Xu,Qinghai Yang,Ramesh R. Rao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1896-1907 被引量:88
标识
DOI:10.1109/jiot.2020.3015970
摘要

The development of the 5G network is envisioned to offer various types of services like virtual reality/augmented reality and autonomous vehicles applications with low-latency requirements in Internet-of-Things (IoT) networks. Mobile-edge computing (MEC) has become a promising solution for enhancing the computation capacity of mobile devices at the edge of the network in a 5G wireless network. Additionally, multiple radio access technologies (multi-RATs) have been verified with the potential in lowering the transmission latency and energy consumption, while improving the Quality of Services (QoS). Benefiting from the cooperation of multi-RATs, large latency-sensitive computing service tasks (L2SC) can be offloaded by different RATs simultaneously, which has great practical significance for data partitioned oriented applications with large task sizes. In this article, to enhance the L2SC offloading services for satisfying low-latency requirements with low energy consumption, we investigate the energy-latency tradeoff problem for partial task offloading in the MEC-enhanced multi-RAT network, considering the limitation of energy and computing in capability-constrained end devices in IoT networks. Specifically, we formulated the L2SC task computation offloading problem to minimize the weighted sum of the latency cost and the energy consumption by jointly optimizing the local computing frequency, task splitting, and transmit power, while guaranteeing the stringent latency requirement and the residual energy constraint. Due to the nonsmoothness and nonconvexity of the formulated problem with high complexity, we convert the tradeoff problem into a smooth biconvex problem and propose an alternate convex search-based algorithm, which can greatly reduce the computational complexity. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扬帆起航发布了新的文献求助10
1秒前
2秒前
shawn完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
6秒前
DO完成签到,获得积分10
6秒前
源源发布了新的文献求助10
7秒前
Leo发布了新的文献求助10
9秒前
啦啦发布了新的文献求助10
9秒前
情怀应助ocdspkss采纳,获得10
11秒前
张张发布了新的文献求助10
12秒前
orixero应助协和_子鱼采纳,获得10
13秒前
yuan完成签到 ,获得积分10
13秒前
源源完成签到,获得积分10
14秒前
樱桃窝窝头完成签到,获得积分10
15秒前
背后的桐完成签到,获得积分20
17秒前
研友_VZG7GZ应助Who采纳,获得10
17秒前
Leo完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
tao完成签到,获得积分10
22秒前
jiangcai完成签到,获得积分10
22秒前
appleye完成签到,获得积分10
24秒前
24秒前
Hongni发布了新的文献求助10
24秒前
ccc发布了新的文献求助10
26秒前
WEN发布了新的文献求助10
26秒前
26秒前
28秒前
饱满绮波完成签到 ,获得积分10
28秒前
???完成签到,获得积分10
30秒前
读行千万发布了新的文献求助10
31秒前
31秒前
hgc发布了新的文献求助30
32秒前
ding应助ccc采纳,获得10
32秒前
叶问儿完成签到,获得积分10
33秒前
WEN完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134