Service-Oriented Energy-Latency Tradeoff for IoT Task Partial Offloading in MEC-Enhanced Multi-RAT Networks

计算机科学 移动边缘计算 能源消耗 计算卸载 服务质量 延迟(音频) 计算机网络 分布式计算 边缘计算 高效能源利用 无线 物联网 服务器 嵌入式系统 电信 生物 电气工程 工程类 生态学
作者
Meng Qin,Nan Cheng,Zewei Jing,Tingting Yang,Wenchao Xu,Qinghai Yang,Ramesh R. Rao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1896-1907 被引量:88
标识
DOI:10.1109/jiot.2020.3015970
摘要

The development of the 5G network is envisioned to offer various types of services like virtual reality/augmented reality and autonomous vehicles applications with low-latency requirements in Internet-of-Things (IoT) networks. Mobile-edge computing (MEC) has become a promising solution for enhancing the computation capacity of mobile devices at the edge of the network in a 5G wireless network. Additionally, multiple radio access technologies (multi-RATs) have been verified with the potential in lowering the transmission latency and energy consumption, while improving the Quality of Services (QoS). Benefiting from the cooperation of multi-RATs, large latency-sensitive computing service tasks (L2SC) can be offloaded by different RATs simultaneously, which has great practical significance for data partitioned oriented applications with large task sizes. In this article, to enhance the L2SC offloading services for satisfying low-latency requirements with low energy consumption, we investigate the energy-latency tradeoff problem for partial task offloading in the MEC-enhanced multi-RAT network, considering the limitation of energy and computing in capability-constrained end devices in IoT networks. Specifically, we formulated the L2SC task computation offloading problem to minimize the weighted sum of the latency cost and the energy consumption by jointly optimizing the local computing frequency, task splitting, and transmit power, while guaranteeing the stringent latency requirement and the residual energy constraint. Due to the nonsmoothness and nonconvexity of the formulated problem with high complexity, we convert the tradeoff problem into a smooth biconvex problem and propose an alternate convex search-based algorithm, which can greatly reduce the computational complexity. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的戾发布了新的文献求助10
刚刚
primrose完成签到 ,获得积分10
刚刚
1秒前
曾国强发布了新的文献求助10
3秒前
Akim应助岁月轮回采纳,获得10
3秒前
3秒前
4秒前
jessica发布了新的文献求助10
4秒前
baolongzhan完成签到,获得积分10
4秒前
4秒前
沙非娅发布了新的文献求助10
5秒前
lv发布了新的文献求助10
6秒前
曹志毅发布了新的文献求助20
6秒前
半分青完成签到,获得积分10
7秒前
axiao发布了新的文献求助10
8秒前
8秒前
怡崽发布了新的文献求助10
9秒前
坚强似狮完成签到,获得积分10
9秒前
乐乐应助起风了采纳,获得10
9秒前
10秒前
10秒前
刻苦的煎蛋完成签到,获得积分10
10秒前
曾国强完成签到,获得积分10
12秒前
瑶桑完成签到,获得积分10
13秒前
14秒前
冷漠的布丁完成签到,获得积分10
14秒前
14秒前
岁月轮回发布了新的文献求助10
15秒前
月光入梦完成签到 ,获得积分10
16秒前
拖拖沓沓ttt完成签到,获得积分20
16秒前
18秒前
19秒前
咩咩完成签到,获得积分10
20秒前
Owen应助sure采纳,获得10
20秒前
jessica完成签到,获得积分10
21秒前
Owen应助拖拖沓沓ttt采纳,获得10
21秒前
23秒前
赘婿应助DUANYALI采纳,获得10
25秒前
25秒前
A宇完成签到,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783