Service-Oriented Energy-Latency Tradeoff for IoT Task Partial Offloading in MEC-Enhanced Multi-RAT Networks

计算机科学 移动边缘计算 能源消耗 计算卸载 服务质量 延迟(音频) 计算机网络 分布式计算 边缘计算 高效能源利用 无线 物联网 服务器 嵌入式系统 电信 生物 电气工程 工程类 生态学
作者
Meng Qin,Nan Cheng,Zewei Jing,Tingting Yang,Wenchao Xu,Qinghai Yang,Ramesh R. Rao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1896-1907 被引量:88
标识
DOI:10.1109/jiot.2020.3015970
摘要

The development of the 5G network is envisioned to offer various types of services like virtual reality/augmented reality and autonomous vehicles applications with low-latency requirements in Internet-of-Things (IoT) networks. Mobile-edge computing (MEC) has become a promising solution for enhancing the computation capacity of mobile devices at the edge of the network in a 5G wireless network. Additionally, multiple radio access technologies (multi-RATs) have been verified with the potential in lowering the transmission latency and energy consumption, while improving the Quality of Services (QoS). Benefiting from the cooperation of multi-RATs, large latency-sensitive computing service tasks (L2SC) can be offloaded by different RATs simultaneously, which has great practical significance for data partitioned oriented applications with large task sizes. In this article, to enhance the L2SC offloading services for satisfying low-latency requirements with low energy consumption, we investigate the energy-latency tradeoff problem for partial task offloading in the MEC-enhanced multi-RAT network, considering the limitation of energy and computing in capability-constrained end devices in IoT networks. Specifically, we formulated the L2SC task computation offloading problem to minimize the weighted sum of the latency cost and the energy consumption by jointly optimizing the local computing frequency, task splitting, and transmit power, while guaranteeing the stringent latency requirement and the residual energy constraint. Due to the nonsmoothness and nonconvexity of the formulated problem with high complexity, we convert the tradeoff problem into a smooth biconvex problem and propose an alternate convex search-based algorithm, which can greatly reduce the computational complexity. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
左肩微笑发布了新的文献求助10
1秒前
liu发布了新的文献求助10
2秒前
安详的自中完成签到,获得积分10
5秒前
wenhaw完成签到 ,获得积分10
5秒前
Akim应助snutcc采纳,获得10
7秒前
jundading发布了新的文献求助10
10秒前
文二目分完成签到 ,获得积分10
10秒前
10秒前
李爱国应助chang采纳,获得10
10秒前
薛妖怪完成签到,获得积分10
10秒前
dingbeicn完成签到,获得积分10
12秒前
奥特超曼应助安详的紫山采纳,获得10
13秒前
14秒前
wwwcy123完成签到,获得积分10
14秒前
刘林美发布了新的文献求助10
15秒前
huangyikun关注了科研通微信公众号
15秒前
18秒前
18秒前
18秒前
snutcc发布了新的文献求助10
20秒前
薛妖怪发布了新的文献求助10
20秒前
zyf完成签到,获得积分10
21秒前
Lucas应助不孤独的发卡采纳,获得30
21秒前
chang发布了新的文献求助10
21秒前
JW完成签到,获得积分10
24秒前
26秒前
坚定白风完成签到,获得积分10
26秒前
田様应助zyyin采纳,获得10
27秒前
薛妖怪完成签到,获得积分10
28秒前
坚定白风发布了新的文献求助10
29秒前
congenialboy发布了新的文献求助10
30秒前
32秒前
iNk应助吴军霄采纳,获得20
32秒前
天空完成签到,获得积分10
34秒前
36秒前
36秒前
呜呜啦啦完成签到,获得积分10
37秒前
39秒前
minino发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190