Service-Oriented Energy-Latency Tradeoff for IoT Task Partial Offloading in MEC-Enhanced Multi-RAT Networks

计算机科学 移动边缘计算 能源消耗 计算卸载 服务质量 延迟(音频) 计算机网络 分布式计算 边缘计算 高效能源利用 无线 物联网 服务器 嵌入式系统 电信 生物 电气工程 工程类 生态学
作者
Meng Qin,Nan Cheng,Zewei Jing,Tingting Yang,Wenchao Xu,Qinghai Yang,Ramesh R. Rao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1896-1907 被引量:88
标识
DOI:10.1109/jiot.2020.3015970
摘要

The development of the 5G network is envisioned to offer various types of services like virtual reality/augmented reality and autonomous vehicles applications with low-latency requirements in Internet-of-Things (IoT) networks. Mobile-edge computing (MEC) has become a promising solution for enhancing the computation capacity of mobile devices at the edge of the network in a 5G wireless network. Additionally, multiple radio access technologies (multi-RATs) have been verified with the potential in lowering the transmission latency and energy consumption, while improving the Quality of Services (QoS). Benefiting from the cooperation of multi-RATs, large latency-sensitive computing service tasks (L2SC) can be offloaded by different RATs simultaneously, which has great practical significance for data partitioned oriented applications with large task sizes. In this article, to enhance the L2SC offloading services for satisfying low-latency requirements with low energy consumption, we investigate the energy-latency tradeoff problem for partial task offloading in the MEC-enhanced multi-RAT network, considering the limitation of energy and computing in capability-constrained end devices in IoT networks. Specifically, we formulated the L2SC task computation offloading problem to minimize the weighted sum of the latency cost and the energy consumption by jointly optimizing the local computing frequency, task splitting, and transmit power, while guaranteeing the stringent latency requirement and the residual energy constraint. Due to the nonsmoothness and nonconvexity of the formulated problem with high complexity, we convert the tradeoff problem into a smooth biconvex problem and propose an alternate convex search-based algorithm, which can greatly reduce the computational complexity. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡凡发布了新的文献求助10
刚刚
免疫与代谢研究完成签到,获得积分10
1秒前
jiajiajai发布了新的文献求助10
2秒前
西早07完成签到,获得积分10
2秒前
Meng完成签到,获得积分10
3秒前
Neo完成签到,获得积分10
4秒前
keyaner完成签到,获得积分10
6秒前
童林艳完成签到,获得积分10
6秒前
ECHO完成签到,获得积分10
8秒前
Lucas应助Fang Xianxin采纳,获得10
9秒前
xiaoyao完成签到,获得积分10
10秒前
asss完成签到,获得积分10
10秒前
Y123发布了新的文献求助30
11秒前
LOVER完成签到 ,获得积分10
12秒前
松松完成签到 ,获得积分10
12秒前
14秒前
nater4ver完成签到,获得积分10
15秒前
UU发布了新的文献求助10
17秒前
超帅鸭子完成签到,获得积分10
17秒前
LXZ完成签到,获得积分10
17秒前
依惜完成签到,获得积分10
17秒前
zhaokunfeng关注了科研通微信公众号
17秒前
赫青亦完成签到 ,获得积分10
17秒前
exy完成签到,获得积分10
18秒前
zhaohu47完成签到,获得积分10
19秒前
超帅鸭子发布了新的文献求助10
19秒前
每每反完成签到,获得积分10
21秒前
凡凡完成签到 ,获得积分10
22秒前
23秒前
呆鹅喵喵完成签到,获得积分10
23秒前
忧心的洙完成签到,获得积分10
24秒前
123完成签到,获得积分10
24秒前
青青草完成签到,获得积分10
26秒前
Fang Xianxin完成签到,获得积分20
26秒前
yue发布了新的文献求助10
26秒前
小甘看世界完成签到,获得积分0
28秒前
量子星尘发布了新的文献求助10
28秒前
张今天也要做科研呀完成签到,获得积分10
29秒前
nater3ver完成签到,获得积分10
30秒前
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029