低血糖
内科学
线粒体ROS
内分泌学
活性氧
血管通透性
生物
糖尿病性视网膜病变
糖尿病
医学
氧化应激
生物化学
作者
Ayaka Yoshinaga,Nobuhiro Kajihara,Daisuke Kukidome,Hiroyuki Motoshima,Takeshi Matsumura,Takeshi Nishikawa,Eiichi Araki
标识
DOI:10.1089/ars.2019.8008
摘要
Aims: Hypoglycemia is associated with increased reactive oxygen species (ROS) production and vascular events. We have previously reported that low-glucose (LG) conditions induce mitochondrial ROS (mtROS) production in aortic endothelial cells (ECs). However, the mechanism by which hypoglycemia promotes diabetic retinopathy (DR) is unclear. Blood-retinal barrier (BRB) disruption occurs in the early stages of DR. We hypothesized that the mechanisms underlying hypoglycemia-induced DR are associated with BRB breakdown due to mtROS generation during hypoglycemia. Here, we aimed to determine whether hypoglycemia exacerbated mtROS production and induced BRB disruption. Results: We observed that hypoglycemia induced mtROS production by increasing fatty acid oxidation (FAO), which was suppressed by overexpression of mitochondrial-specific manganese superoxide dismutase (MnSOD) in retinal ECs. Furthermore, FAO blockade decreased the hypoglycemia-induced mtROS production. Recurrent hypoglycemia increased albumin leak in diabetic mice retina, which was suppressed in diabetic vascular endothelial cell-specific MnSOD transgenic (eMnSOD-Tg) mice. Pharmacological FAO blockade also reduced mtROS production, reduced vascular endothelial growth factor (VEGF) production during hypoglycemia, and prevented retinal vascular permeability in diabetic mice. MnSOD overexpression or carnitine palmitoyltransferase I (CPT1) blockade suppressed vascular endothelial-cadherin phosphorylation under LG in retinal ECs. Innovation and Conclusion: Reduction of mtROS and VEGF production via pharmacological FAO and/or CPT1 blockade may prevent hypoglycemia-induced worsening of DR.
科研通智能强力驱动
Strongly Powered by AbleSci AI