材料科学
复合材料
体积分数
陶瓷
电介质
介电常数
烧结
纳米复合材料
耗散因子
钛酸钡
电阻率和电导率
制作
相对介电常数
介电损耗
复合数
聚合物
工程类
电气工程
病理
医学
替代医学
光电子学
作者
Takao Sada,Kosuke Tsuji,Arnaud Ndayishimiye,Z. Hugh Fan,Yoshihiro Fujioka,Clive A. Randall
摘要
The dielectric property relations of a series of BaTiO3–polymer composites with a uniquely high-volume fraction of ceramic [(1 − x)BaTiO3–x polytetrafluoroethylene (PTFE), with volume fractions x = 0.025, 0.05, 0.1, and 0.2] are studied. Such high-volume fraction of the BaTiO3 phase is achieved by using the cold sintering process, as it enables a single-step densification of oxides at an extremely low temperature; typically, the volume fractions from other processing methods are limited to ceramic filler volume fractions of ∼0.6. Microstructural and resistivity analyses suggest that the optimal range of the polymer content to effectively enhance the functions is x = 0.05, as higher volume fractions of the polymer hinder the densification of the ceramic. The composite exhibits improved properties such as lower loss tangent, higher resistivity, and high permittivity that vary systematically with x following an empirical mixing law. Here, we consider the composite mixing law trends and the changes to properties, which indicate that size effects are also being induced in the dielectric response, including shift of Tc, broadening of transition, and reduction of permittivity with respect to volume fraction of the PTFE. Our findings provide a new and simple strategy for the fabrication of ceramic–polymer composites with extremely high relative permittivities and resistivities, and these observations all point to a route that can allow us to engineer new types of advanced dielectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI