Prediction of ultra-short-term wind power based on BBO-KELM method

极限学习机 计算机科学 粒子群优化 人工神经网络 差异进化 核(代数) 算法 人工智能 数学 组合数学
作者
Jun Li,Meng Li
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:11 (5) 被引量:16
标识
DOI:10.1063/1.5113555
摘要

For ultrashort-term wind power prediction, an optimized extreme learning machine method based on biogeography-based optimization (BBO-KELM) is proposed. The kernel extreme learning machine (KELM) method only uses the kernel function to represent the unknown nonlinear feature map of the hidden layer and does not need to select the number of nodes of the hidden layer. Meanwhile, the output weight of the network is calculated by the regularized least squares algorithm. The BBO algorithm, which is a new evolutionary algorithm (EA) motivated by biogeography, which is the study of the distribution of biological species through time and space, is efficient in solving high dimensional, multiobjective optimization problems. In this paper, the KELM method is optimized using the BBO algorithm to optimize the selection of input variable sets, the parameters of the kernel function, and the Tikhonov regularization coefficient, so as to further improve the learning performance of the KELM method. To verify the effectiveness of the BBO-KELM method proposed in this paper, the BBO-KELM method is applied to ultrashort-term wind power prediction research in different regions and is compared with benchmark methods such as persistence, neural networks, support vector machine, extreme learning machine (ELM), and other optimized ELM (O-ELM) or KELM (O-KELM) methods such as BBO-ELM, particle swarm optimization (PSO)-ELM, differential evolution-KELM, simulated annealing-KELM, and PSO-KELM, under the same conditions. Experimental results show that the BBO-KELM methods with cosine migration can give better prediction accuracy; in addition, in the proposed method, the parameters of the kernel function do not need to be selected by trial-and-error and the relevant input variables can be automatically selected, improving the generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助飘零枫叶采纳,获得10
1秒前
1秒前
香蕉觅云应助机灵的寒松采纳,获得10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
2秒前
子车茗应助bofu采纳,获得30
2秒前
holic完成签到,获得积分10
3秒前
3秒前
Zeger116完成签到,获得积分10
3秒前
lalala完成签到,获得积分10
3秒前
3秒前
小石榴发布了新的文献求助10
4秒前
甜甜草丛完成签到,获得积分10
4秒前
失眠双双应助WizBLue采纳,获得10
4秒前
mhl11给调研昵称的求助进行了留言
5秒前
良辰应助pp采纳,获得10
5秒前
无聊的人完成签到 ,获得积分10
5秒前
彭于晏应助water采纳,获得10
5秒前
DMC北风过境完成签到,获得积分10
6秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
所所应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
欣慰的犀牛完成签到,获得积分10
7秒前
8秒前
小方发布了新的文献求助10
8秒前
shooin完成签到,获得积分10
9秒前
高贵的青槐完成签到,获得积分10
9秒前
9秒前
www发布了新的文献求助10
9秒前
10秒前
Ava应助雍雍采纳,获得10
11秒前
李健的小迷弟应助Likx采纳,获得10
11秒前
尼尼完成签到,获得积分20
12秒前
小蘑菇应助keyanxiaobai采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307797
求助须知:如何正确求助?哪些是违规求助? 2941267
关于积分的说明 8502515
捐赠科研通 2615823
什么是DOI,文献DOI怎么找? 1429129
科研通“疑难数据库(出版商)”最低求助积分说明 663660
邀请新用户注册赠送积分活动 648617