Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans

心室 医学 心脏成像 分割 对比度(视觉) 人口 心脏宠物 放射科 核医学 正电子发射断层摄影术 人工智能 心脏病学 计算机科学 环境卫生
作者
Rahil Shahzad,Daniël Bos,Ricardo P.J. Budde,Karlijn Pellikaan,Wiro J. Niessen,Aad van der Lugt,Theo van Walsum
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (9): 3798-3813 被引量:34
标识
DOI:10.1088/1361-6560/aa63cb
摘要

Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is [Formula: see text] mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书立方完成签到 ,获得积分10
1秒前
1秒前
metalmd完成签到,获得积分10
1秒前
研友_08okB8完成签到,获得积分10
2秒前
Zn应助还不如瞎写采纳,获得10
2秒前
迟大猫应助无辜之卉采纳,获得10
2秒前
搜集达人应助无辜之卉采纳,获得10
2秒前
王玉琴发布了新的文献求助20
2秒前
okghy完成签到 ,获得积分10
3秒前
YYY完成签到 ,获得积分10
3秒前
pinging应助肖俊彦采纳,获得10
3秒前
八八发布了新的文献求助20
4秒前
通~发布了新的文献求助30
4秒前
淡定的思松应助Ryan采纳,获得10
4秒前
李来仪发布了新的文献求助10
4秒前
5秒前
封小封完成签到,获得积分10
5秒前
面面完成签到,获得积分20
5秒前
笑点低梦露完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
DD完成签到,获得积分10
7秒前
今非完成签到,获得积分10
7秒前
研友_VZG7GZ应助LiShin采纳,获得10
7秒前
wangye完成签到,获得积分10
8秒前
糜厉完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助谢安采纳,获得10
9秒前
10秒前
10秒前
wangye发布了新的文献求助10
10秒前
拼搏起眸完成签到 ,获得积分20
11秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
小敦关注了科研通微信公众号
12秒前
最优解完成签到,获得积分10
12秒前
海棠听风完成签到,获得积分10
12秒前
WUYANG完成签到,获得积分10
13秒前
情怀应助javalin采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794