Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 几何学 生物 遗传学 语言学 哲学 管理 经济
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13299
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡他发布了新的文献求助10
1秒前
雨乐发布了新的文献求助10
3秒前
suntee发布了新的文献求助10
3秒前
5秒前
33333完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
KKKK发布了新的文献求助10
6秒前
7秒前
木易木土完成签到,获得积分10
8秒前
8秒前
天天快乐应助Fan采纳,获得10
8秒前
yu关闭了yu文献求助
9秒前
Jasper应助ychen采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
十月完成签到,获得积分10
13秒前
能干巨人应助科研通管家采纳,获得10
13秒前
aaa完成签到,获得积分10
13秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
一剑温柔发布了新的文献求助10
15秒前
16秒前
大模型应助li17195采纳,获得10
16秒前
17秒前
17秒前
orixero应助标致的甜瓜采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704