Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 哲学 几何学 生物 经济 管理 遗传学 语言学
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13424
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
eryaclover完成签到,获得积分10
1秒前
PQ发布了新的文献求助10
1秒前
1秒前
manstar完成签到,获得积分10
2秒前
清风与你发布了新的文献求助10
2秒前
Chrysan完成签到,获得积分10
2秒前
灵巧妙柏发布了新的文献求助10
2秒前
虚拟的冰香完成签到,获得积分10
3秒前
3秒前
Yuki完成签到,获得积分10
3秒前
QLR发布了新的文献求助10
4秒前
研友_VZG7GZ应助yangfeidong采纳,获得10
4秒前
kaww发布了新的文献求助10
4秒前
柒柒发布了新的文献求助10
4秒前
Olivia发布了新的文献求助10
4秒前
斯文败类应助生动雨真采纳,获得10
4秒前
5秒前
5秒前
mryun完成签到 ,获得积分10
5秒前
一朵小发发完成签到,获得积分10
6秒前
炸毛娟完成签到,获得积分10
6秒前
6秒前
7秒前
pxj完成签到,获得积分20
7秒前
所所应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
xjcy应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
畅快访旋应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698