Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 哲学 几何学 生物 经济 管理 遗传学 语言学
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13929
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
w白发布了新的文献求助10
2秒前
4秒前
张大帅6666完成签到,获得积分10
4秒前
张大诚完成签到,获得积分10
4秒前
牛市棋手完成签到,获得积分10
5秒前
解语花发布了新的文献求助10
6秒前
sweetsbt发布了新的文献求助10
6秒前
英姑应助森鹿采纳,获得30
6秒前
xz完成签到 ,获得积分10
6秒前
小马甲应助Chester采纳,获得10
7秒前
芭蕾恰恰舞完成签到,获得积分10
7秒前
汉天完成签到,获得积分10
7秒前
七月发布了新的文献求助10
8秒前
蜜桃小丸子完成签到 ,获得积分10
8秒前
wuming完成签到,获得积分10
8秒前
...完成签到,获得积分10
8秒前
11秒前
11秒前
dxxcshin完成签到,获得积分10
11秒前
13秒前
深情映萱关注了科研通微信公众号
13秒前
完美世界应助司佳雨采纳,获得10
14秒前
科研通AI6应助颜朗采纳,获得10
15秒前
科研通AI6应助七月采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Young应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
寻道图强应助科研通管家采纳,获得30
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
大龙哥886应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830