Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 哲学 几何学 生物 经济 管理 遗传学 语言学
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13929
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongjing发布了新的文献求助10
刚刚
老实的衬衫完成签到 ,获得积分10
1秒前
1秒前
1秒前
Fortune发布了新的文献求助10
2秒前
2秒前
Ripples完成签到,获得积分10
3秒前
彭于晏应助hongjing采纳,获得10
3秒前
科研通AI6应助wang采纳,获得10
3秒前
酷炫魂幽发布了新的文献求助10
4秒前
4秒前
浅蓝发布了新的文献求助10
5秒前
小杭76应助wocao采纳,获得10
5秒前
传奇3应助Refuel采纳,获得10
6秒前
huangbing123完成签到 ,获得积分10
6秒前
乐乐应助咩咩采纳,获得10
7秒前
漫天白沙完成签到 ,获得积分10
7秒前
tangzanwayne完成签到 ,获得积分10
8秒前
wanna发布了新的文献求助10
8秒前
8秒前
Wendell发布了新的文献求助10
9秒前
9秒前
项阑悦完成签到,获得积分10
10秒前
无骨鸡爪不长胖完成签到,获得积分10
10秒前
10秒前
monned完成签到 ,获得积分10
11秒前
冉景平完成签到 ,获得积分10
11秒前
11秒前
嘻嘻发布了新的文献求助10
12秒前
领导范儿应助Refuel采纳,获得10
12秒前
义气青丝发布了新的文献求助10
14秒前
名不显时心不朽完成签到,获得积分10
15秒前
乐乐乐发布了新的文献求助10
16秒前
林灏泽完成签到,获得积分10
16秒前
18秒前
19秒前
wanci应助Refuel采纳,获得10
20秒前
Wendell完成签到,获得积分10
20秒前
21秒前
完美世界应助wjw采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429