Sequence to Sequence Learning with Neural Networks

计算机科学 人工智能 短语 判决 序列(生物学) 任务(项目管理) 自然语言处理 词(群论) 循环神经网络 语音识别 机器翻译 深度学习 人工神经网络 词汇 数学 几何学 生物 遗传学 语言学 哲学 管理 经济
作者
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:13811
标识
DOI:10.48550/arxiv.1409.3215
摘要

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的南风完成签到,获得积分10
1秒前
qcl完成签到,获得积分10
1秒前
安然无恙完成签到,获得积分10
1秒前
半夏完成签到,获得积分10
2秒前
玉鱼儿完成签到 ,获得积分10
2秒前
lf-leo完成签到,获得积分10
3秒前
Hello应助nyfz2002采纳,获得10
3秒前
Dandy发布了新的文献求助10
4秒前
大个应助科研通管家采纳,获得10
5秒前
lizhaoyu应助科研通管家采纳,获得10
5秒前
lizhaoyu应助科研通管家采纳,获得10
5秒前
沛沛完成签到,获得积分10
5秒前
lizhaoyu应助科研通管家采纳,获得10
5秒前
lizhaoyu应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
DijiaXu应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得50
6秒前
ding应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研狗采纳,获得10
6秒前
Serendiply完成签到,获得积分10
7秒前
7秒前
dola完成签到,获得积分10
7秒前
kagami发布了新的文献求助10
7秒前
8秒前
忽然之间完成签到,获得积分10
8秒前
9秒前
9秒前
王小平完成签到,获得积分10
10秒前
范先生完成签到,获得积分10
10秒前
jeremy完成签到,获得积分10
10秒前
Dandy完成签到,获得积分10
11秒前
丸子完成签到,获得积分10
11秒前
orixero应助fuyg采纳,获得10
11秒前
罗密欧与傅里叶完成签到,获得积分10
11秒前
YOLO完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027