吸引子
数学
有界函数
数学分析
豪斯多夫维数
紧凑空间
维数(图论)
领域(数学分析)
耗散系统
非线性系统
分形维数
空格(标点符号)
豪斯多夫空间
Neumann边界条件
符号(数学)
边界(拓扑)
纯数学
分形
物理
计算机科学
量子力学
操作系统
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2009-01-01
卷期号:2 (1): 193-219
被引量:25
标识
DOI:10.3934/dcdss.2009.2.193
摘要
The existence of a global attractor for the solution semiflow of Selkov equations with Neumann boundary conditions on a bounded domain in space dimension $n\le 3$ is proved. This reaction-diffusion system features the oppositely-signed nonlinear terms so that the dissipative sign-condition is not satisfied. The asymptotical compactness is shown by a new decomposition method. It is also proved that the Hausdorff dimension and fractal dimension of the global attractor are finite.
科研通智能强力驱动
Strongly Powered by AbleSci AI