Bayesian rule learning for biomedical data mining

计算机科学 机器学习 判别式 人工智能 贝叶斯概率 推论 仿形(计算机编程) 数据挖掘 概率逻辑 生物标志物发现 启发式 贝叶斯定理 贝叶斯网络 贝叶斯推理 基于规则的系统 规则归纳法 操作系统 基因 生物化学 化学 蛋白质组学
作者
Vanathi Gopalakrishnan,Jonathan L. Lustgarten,Shyam Visweswaran,Gregory F. Cooper
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:26 (5): 668-675 被引量:39
标识
DOI:10.1093/bioinformatics/btq005
摘要

Abstract Motivation: Disease state prediction from biomarker profiling studies is an important problem because more accurate classification models will potentially lead to the discovery of better, more discriminative markers. Data mining methods are routinely applied to such analyses of biomedical datasets generated from high-throughput ‘omic’ technologies applied to clinical samples from tissues or bodily fluids. Past work has demonstrated that rule models can be successfully applied to this problem, since they can produce understandable models that facilitate review of discriminative biomarkers by biomedical scientists. While many rule-based methods produce rules that make predictions under uncertainty, they typically do not quantify the uncertainty in the validity of the rule itself. This article describes an approach that uses a Bayesian score to evaluate rule models. Results: We have combined the expressiveness of rules with the mathematical rigor of Bayesian networks (BNs) to develop and evaluate a Bayesian rule learning (BRL) system. This system utilizes a novel variant of the K2 algorithm for building BNs from the training data to provide probabilistic scores for IF-antecedent-THEN-consequent rules using heuristic best-first search. We then apply rule-based inference to evaluate the learned models during 10-fold cross-validation performed two times. The BRL system is evaluated on 24 published ‘omic’ datasets, and on average it performs on par or better than other readily available rule learning methods. Moreover, BRL produces models that contain on average 70% fewer variables, which means that the biomarker panels for disease prediction contain fewer markers for further verification and validation by bench scientists. Contact: vanathi@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nazure完成签到,获得积分10
1秒前
2秒前
在水一方应助朴实山兰采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
停停走走发布了新的文献求助10
6秒前
科目三应助zbb123采纳,获得10
6秒前
lei发布了新的文献求助10
6秒前
7秒前
8秒前
1111发布了新的文献求助10
8秒前
玉蝉发布了新的文献求助10
9秒前
茨茨喵喵完成签到,获得积分10
9秒前
msss11511完成签到,获得积分10
10秒前
10秒前
小王完成签到 ,获得积分10
10秒前
完美世界应助停停走走采纳,获得10
11秒前
可爱卿完成签到 ,获得积分10
11秒前
斯文败类应助zrr采纳,获得10
12秒前
wuuu_ruby发布了新的文献求助10
13秒前
qq关闭了qq文献求助
13秒前
14秒前
六个核桃发布了新的文献求助10
16秒前
果果发布了新的文献求助20
16秒前
拉长的问晴完成签到,获得积分10
16秒前
科研通AI2S应助闵不悔采纳,获得10
17秒前
17秒前
17秒前
xiaoou发布了新的文献求助10
20秒前
孙哈哈发布了新的文献求助10
24秒前
26秒前
科目三应助dellajj采纳,获得10
26秒前
bkagyin应助花凉采纳,获得10
29秒前
洛洛发布了新的文献求助10
30秒前
30秒前
30秒前
小猪哼哼完成签到,获得积分10
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663