Bayesian rule learning for biomedical data mining

计算机科学 机器学习 判别式 人工智能 贝叶斯概率 推论 仿形(计算机编程) 数据挖掘 概率逻辑 生物标志物发现 启发式 贝叶斯定理 贝叶斯网络 贝叶斯推理 基于规则的系统 规则归纳法 操作系统 基因 生物化学 化学 蛋白质组学
作者
Vanathi Gopalakrishnan,Jonathan L. Lustgarten,Shyam Visweswaran,Gregory F. Cooper
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:26 (5): 668-675 被引量:39
标识
DOI:10.1093/bioinformatics/btq005
摘要

Abstract Motivation: Disease state prediction from biomarker profiling studies is an important problem because more accurate classification models will potentially lead to the discovery of better, more discriminative markers. Data mining methods are routinely applied to such analyses of biomedical datasets generated from high-throughput ‘omic’ technologies applied to clinical samples from tissues or bodily fluids. Past work has demonstrated that rule models can be successfully applied to this problem, since they can produce understandable models that facilitate review of discriminative biomarkers by biomedical scientists. While many rule-based methods produce rules that make predictions under uncertainty, they typically do not quantify the uncertainty in the validity of the rule itself. This article describes an approach that uses a Bayesian score to evaluate rule models. Results: We have combined the expressiveness of rules with the mathematical rigor of Bayesian networks (BNs) to develop and evaluate a Bayesian rule learning (BRL) system. This system utilizes a novel variant of the K2 algorithm for building BNs from the training data to provide probabilistic scores for IF-antecedent-THEN-consequent rules using heuristic best-first search. We then apply rule-based inference to evaluate the learned models during 10-fold cross-validation performed two times. The BRL system is evaluated on 24 published ‘omic’ datasets, and on average it performs on par or better than other readily available rule learning methods. Moreover, BRL produces models that contain on average 70% fewer variables, which means that the biomarker panels for disease prediction contain fewer markers for further verification and validation by bench scientists. Contact: vanathi@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先点菜吧发布了新的文献求助10
刚刚
浮游应助东东采纳,获得10
1秒前
黑糖珍珠完成签到 ,获得积分10
3秒前
记忆完成签到,获得积分10
3秒前
同迎完成签到,获得积分10
3秒前
lizike发布了新的文献求助10
5秒前
9秒前
爆米花完成签到,获得积分10
9秒前
YJ完成签到,获得积分10
10秒前
11秒前
15秒前
先点菜吧完成签到,获得积分10
15秒前
泷生完成签到,获得积分10
21秒前
22秒前
感动手链发布了新的文献求助10
23秒前
23秒前
优秀冰真发布了新的文献求助10
24秒前
25秒前
26秒前
wzy512发布了新的文献求助10
28秒前
123发布了新的文献求助10
29秒前
徐华佳发布了新的文献求助10
30秒前
靳言发布了新的文献求助10
30秒前
30秒前
31秒前
32秒前
32秒前
32秒前
汉堡包应助收手吧大哥采纳,获得10
33秒前
xxhh33完成签到,获得积分10
34秒前
35秒前
小猪坨发布了新的文献求助10
35秒前
Ava应助请叫我朱杰采纳,获得10
35秒前
36秒前
未来可期发布了新的文献求助10
36秒前
36秒前
不安秋荷发布了新的文献求助10
38秒前
aboy发布了新的文献求助10
39秒前
GuShc完成签到 ,获得积分10
39秒前
39秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349900
求助须知:如何正确求助?哪些是违规求助? 4483544
关于积分的说明 13956290
捐赠科研通 4382763
什么是DOI,文献DOI怎么找? 2407949
邀请新用户注册赠送积分活动 1400653
关于科研通互助平台的介绍 1373903