Bayesian rule learning for biomedical data mining

计算机科学 机器学习 判别式 人工智能 贝叶斯概率 推论 仿形(计算机编程) 数据挖掘 概率逻辑 生物标志物发现 启发式 贝叶斯定理 贝叶斯网络 贝叶斯推理 基于规则的系统 规则归纳法 生物化学 化学 蛋白质组学 基因 操作系统
作者
Vanathi Gopalakrishnan,Jonathan L. Lustgarten,Shyam Visweswaran,Gregory F. Cooper
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:26 (5): 668-675 被引量:39
标识
DOI:10.1093/bioinformatics/btq005
摘要

Abstract Motivation: Disease state prediction from biomarker profiling studies is an important problem because more accurate classification models will potentially lead to the discovery of better, more discriminative markers. Data mining methods are routinely applied to such analyses of biomedical datasets generated from high-throughput ‘omic’ technologies applied to clinical samples from tissues or bodily fluids. Past work has demonstrated that rule models can be successfully applied to this problem, since they can produce understandable models that facilitate review of discriminative biomarkers by biomedical scientists. While many rule-based methods produce rules that make predictions under uncertainty, they typically do not quantify the uncertainty in the validity of the rule itself. This article describes an approach that uses a Bayesian score to evaluate rule models. Results: We have combined the expressiveness of rules with the mathematical rigor of Bayesian networks (BNs) to develop and evaluate a Bayesian rule learning (BRL) system. This system utilizes a novel variant of the K2 algorithm for building BNs from the training data to provide probabilistic scores for IF-antecedent-THEN-consequent rules using heuristic best-first search. We then apply rule-based inference to evaluate the learned models during 10-fold cross-validation performed two times. The BRL system is evaluated on 24 published ‘omic’ datasets, and on average it performs on par or better than other readily available rule learning methods. Moreover, BRL produces models that contain on average 70% fewer variables, which means that the biomarker panels for disease prediction contain fewer markers for further verification and validation by bench scientists. Contact: vanathi@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
心灵美映之完成签到 ,获得积分10
刚刚
AARON完成签到,获得积分20
刚刚
刚刚
mengtong发布了新的文献求助10
1秒前
柯英钊完成签到,获得积分10
2秒前
2秒前
ISLAND发布了新的文献求助10
3秒前
3秒前
AARON发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
lameliu发布了新的文献求助10
6秒前
yanting发布了新的文献求助10
7秒前
7秒前
Anna完成签到 ,获得积分10
7秒前
aaa发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
8秒前
mengtong完成签到,获得积分10
8秒前
君衡完成签到 ,获得积分10
9秒前
MISA完成签到 ,获得积分10
9秒前
Ayuan发布了新的文献求助10
10秒前
一刀完成签到,获得积分10
10秒前
12秒前
愉快洋葱发布了新的文献求助10
13秒前
13秒前
852应助唐俊杰采纳,获得10
13秒前
搞怪人雄发布了新的文献求助10
13秒前
科研通AI6应助老虎采纳,获得10
13秒前
13秒前
zouzou完成签到,获得积分10
14秒前
FartKing发布了新的文献求助10
14秒前
认真的雨琴完成签到,获得积分20
14秒前
善学以致用应助果子采纳,获得10
15秒前
xi完成签到 ,获得积分10
15秒前
ISLAND完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109