已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayesian rule learning for biomedical data mining

计算机科学 机器学习 判别式 人工智能 贝叶斯概率 推论 仿形(计算机编程) 数据挖掘 概率逻辑 生物标志物发现 启发式 贝叶斯定理 贝叶斯网络 贝叶斯推理 基于规则的系统 规则归纳法 操作系统 基因 生物化学 化学 蛋白质组学
作者
Vanathi Gopalakrishnan,Jonathan L. Lustgarten,Shyam Visweswaran,Gregory F. Cooper
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:26 (5): 668-675 被引量:39
标识
DOI:10.1093/bioinformatics/btq005
摘要

Abstract Motivation: Disease state prediction from biomarker profiling studies is an important problem because more accurate classification models will potentially lead to the discovery of better, more discriminative markers. Data mining methods are routinely applied to such analyses of biomedical datasets generated from high-throughput ‘omic’ technologies applied to clinical samples from tissues or bodily fluids. Past work has demonstrated that rule models can be successfully applied to this problem, since they can produce understandable models that facilitate review of discriminative biomarkers by biomedical scientists. While many rule-based methods produce rules that make predictions under uncertainty, they typically do not quantify the uncertainty in the validity of the rule itself. This article describes an approach that uses a Bayesian score to evaluate rule models. Results: We have combined the expressiveness of rules with the mathematical rigor of Bayesian networks (BNs) to develop and evaluate a Bayesian rule learning (BRL) system. This system utilizes a novel variant of the K2 algorithm for building BNs from the training data to provide probabilistic scores for IF-antecedent-THEN-consequent rules using heuristic best-first search. We then apply rule-based inference to evaluate the learned models during 10-fold cross-validation performed two times. The BRL system is evaluated on 24 published ‘omic’ datasets, and on average it performs on par or better than other readily available rule learning methods. Moreover, BRL produces models that contain on average 70% fewer variables, which means that the biomarker panels for disease prediction contain fewer markers for further verification and validation by bench scientists. Contact: vanathi@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助俏皮的飞烟采纳,获得10
5秒前
凯旋预言完成签到 ,获得积分10
5秒前
Bob完成签到,获得积分10
8秒前
尔信完成签到 ,获得积分10
10秒前
10秒前
chun发布了新的文献求助10
11秒前
14秒前
15秒前
爆米花应助lijunlhc采纳,获得30
16秒前
莫欺少年穷完成签到,获得积分10
17秒前
章鱼哥想毕业完成签到 ,获得积分10
19秒前
19秒前
Jasmine完成签到,获得积分20
21秒前
張医铄完成签到,获得积分10
23秒前
木通完成签到,获得积分10
23秒前
tannie完成签到 ,获得积分10
24秒前
wxy发布了新的文献求助10
24秒前
追忆应助炙热的人生采纳,获得10
26秒前
wxy完成签到,获得积分10
31秒前
Ava应助Orange采纳,获得10
34秒前
材料打工人完成签到 ,获得积分10
35秒前
小书虫完成签到 ,获得积分10
35秒前
圈儿多尼完成签到,获得积分10
37秒前
善学以致用应助djbj2022采纳,获得10
39秒前
41秒前
和谐小霸王完成签到 ,获得积分10
41秒前
42秒前
牟翎完成签到,获得积分10
43秒前
dddd完成签到 ,获得积分10
44秒前
fang完成签到 ,获得积分10
46秒前
46秒前
牟翎发布了新的文献求助10
47秒前
8R60d8应助zjkzh采纳,获得10
48秒前
想人陪的马里奥完成签到,获得积分10
54秒前
54秒前
量子星尘发布了新的文献求助30
55秒前
kmo发布了新的文献求助10
57秒前
下弦月完成签到,获得积分10
57秒前
djbj2022发布了新的文献求助10
57秒前
万能图书馆应助鸭子兔采纳,获得10
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210