化学
氢氧化钠
吸光度
纤维素
傅里叶变换红外光谱
碳酸钠
核化学
氢氧化物
二氧化碳
钠
有机化学
无机化学
色谱法
化学工程
工程类
作者
Sang Youn Oh,Dong Il Yoo,Younsook Shin,Gon Seo
标识
DOI:10.1016/j.carres.2004.11.027
摘要
Cellulose samples treated with sodium hydroxide (NaOH) and carbon dioxide in dimethylacetamide (DMAc) were analyzed by FTIR spectroscopy. Absorbance of hydrogen-bonded OH stretching was considerably decreased by the treatment of NaOH and carbon dioxide. The relative absorbance ratio (A(4000-2995)/A(993)) represented the decrease of absorbance as a criterion of hydrogen-bond intensity (HBI). The absorbance of the band at 1430cm(-1) due to a crystalline absorption was also decreased by NaOH treatment. The absorbance ratio of the bands at 1430 and 987-893cm(-1) (A(1430)/A(900)), adopted as crystallinity index (CI), was closely related to the portion of cellulose I structure. With the help of FTIR equipped with an on-line evacuation apparatus, broad OH bending due to bound water could be eliminated. FTIR spectra of the carbon dioxide-treated cellulose samples at 1700-1525cm(-1) were divided into some bands including 1663, 1635, 1616, and 1593cm(-1). The broad OH bending due to bound water at 1641-1645cm(-1) was resolved to two bands at 1663 and 1635cm(-1). As a trace of DMAc, the band at 1616cm(-1) is disappeared by washing for the cellulose treated with carbon dioxide (Cell 1-C and Cell 2/60-C). The decrease of HBI, the easy removal of DMAc, and the band at 1593cm(-1) supported the introduction of new chemical structure in cellulose. The bands shown at 1593 and 1470cm(-1) was assigned as hydrogen-bonded carbonyl stretching and O-C-O stretching of the carbonate ion.
科研通智能强力驱动
Strongly Powered by AbleSci AI