纤维二糖
纤维素酶
β-葡萄糖苷酶
纤维素乙醇
发酵
里氏木霉
纤维素
化学
水解
乙醇燃料
生物化学
乙醇发酵
酿酒酵母
食品科学
酵母
作者
Hongting Tang,Jin Hou,Yu Shen,Lili Xu,Hui Yang,Xu Fang,Xiaoming Bao
出处
期刊:Journal of Microbiology and Biotechnology
[Journal of Microbiology and Biotechnology]
日期:2013-11-28
卷期号:23 (11): 1577-1585
被引量:30
标识
DOI:10.4014/jmb.1305.05011
摘要
Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of β-glucosidase. In this study, three β-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the β-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera β-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the β-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of β-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI