清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fast detection of manufacturing systematic design pattern failures causing device yield loss

计算机科学 产量(工程) 可靠性工程 材料科学 复合材料 工程类
作者
Jean-Christophe Le Denmat,Nelly Feldman,Olivia Riewer,Emek Yesilada,Michel Vallet,Christophe Suzor,Salvatore Talluto
出处
期刊:Proceedings of SPIE
标识
DOI:10.1117/12.2085307
摘要

Starting from the 45nm technology node, systematic defectivity has a significant impact on device yield loss with each new technology node. The effort required to achieve patterning maturity with zero yield detractor is also significantly increasing with technology nodes. Within the manufacturing environment, new in-line wafer inspection methods have been developed to identify device systematic defects, including the process window qualification (PWQ) methodology used to characterize process robustness. Although patterning is characterized with PWQ methodology, some questions remain: How can we demonstrate that the measured process window is large enough to avoid design-based defects which will impact the device yield? Can we monitor the systematic yield loss on nominal wafers? From device test engineering point of view, systematic yield detractors are expected to be identified by Automated Test Pattern Generator (ATPG) test results diagnostics performed after electrical wafer sort (EWS). Test diagnostics can identify failed nets or cells causing systematic yield loss [1],[2]. Convergence from device failed nets and cells to failed manufacturing design pattern are usually based on assumptions that should be confirmed by an electrical failure analysis (EFA). However, many EFA investigations are required before the design pattern failures are found, and thus design pattern failure identification was costly in time and resources. With this situation, an opportunity to share knowledge exists between device test engineering and manufacturing environments to help with device yield improvement. This paper presents a new yield diagnostics flow dedicated to correlation of critical design patterns detected within manufacturing environment, with the observed device yield loss. The results obtained with this new flow on a 28nm technology device are described, with the defects of interest and the device yield impact for each design pattern. The EFA done to validate the design pattern to yield correlation are also presented, including physical cross sections. Finally, the application of this new flow for systematic design pattern yield monitoring, compared to classic inline wafer inspection methods, is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
22秒前
qiongqiong完成签到 ,获得积分10
23秒前
32秒前
随心所欲完成签到 ,获得积分10
33秒前
42秒前
44秒前
54秒前
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
1分钟前
银鱼在游完成签到,获得积分10
1分钟前
独特的师完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
方白秋完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
2分钟前
wrl2023发布了新的文献求助10
2分钟前
sqc发布了新的文献求助10
2分钟前
wrl2023完成签到,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
临兵者完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
开放青旋应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210