亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast detection of manufacturing systematic design pattern failures causing device yield loss

计算机科学 产量(工程) 可靠性工程 材料科学 复合材料 工程类
作者
Jean-Christophe Le Denmat,Nelly Feldman,Olivia Riewer,Emek Yesilada,Michel Vallet,Christophe Suzor,Salvatore Talluto
出处
期刊:Proceedings of SPIE
标识
DOI:10.1117/12.2085307
摘要

Starting from the 45nm technology node, systematic defectivity has a significant impact on device yield loss with each new technology node. The effort required to achieve patterning maturity with zero yield detractor is also significantly increasing with technology nodes. Within the manufacturing environment, new in-line wafer inspection methods have been developed to identify device systematic defects, including the process window qualification (PWQ) methodology used to characterize process robustness. Although patterning is characterized with PWQ methodology, some questions remain: How can we demonstrate that the measured process window is large enough to avoid design-based defects which will impact the device yield? Can we monitor the systematic yield loss on nominal wafers? From device test engineering point of view, systematic yield detractors are expected to be identified by Automated Test Pattern Generator (ATPG) test results diagnostics performed after electrical wafer sort (EWS). Test diagnostics can identify failed nets or cells causing systematic yield loss [1],[2]. Convergence from device failed nets and cells to failed manufacturing design pattern are usually based on assumptions that should be confirmed by an electrical failure analysis (EFA). However, many EFA investigations are required before the design pattern failures are found, and thus design pattern failure identification was costly in time and resources. With this situation, an opportunity to share knowledge exists between device test engineering and manufacturing environments to help with device yield improvement. This paper presents a new yield diagnostics flow dedicated to correlation of critical design patterns detected within manufacturing environment, with the observed device yield loss. The results obtained with this new flow on a 28nm technology device are described, with the defects of interest and the device yield impact for each design pattern. The EFA done to validate the design pattern to yield correlation are also presented, including physical cross sections. Finally, the application of this new flow for systematic design pattern yield monitoring, compared to classic inline wafer inspection methods, is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
清脆安南发布了新的文献求助10
11秒前
19秒前
烟火发布了新的文献求助10
22秒前
烟火完成签到,获得积分10
40秒前
阿尔法贝塔完成签到 ,获得积分10
53秒前
59秒前
1分钟前
啊z应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
研友_Lmb15n完成签到,获得积分10
1分钟前
zkg发布了新的文献求助10
1分钟前
2分钟前
江梁发布了新的文献求助10
2分钟前
大个应助贝加尔湖畔采纳,获得10
2分钟前
2分钟前
2分钟前
SoreThrow完成签到,获得积分10
2分钟前
霡霂发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
心随以动完成签到 ,获得积分10
3分钟前
3分钟前
修辛完成签到 ,获得积分10
3分钟前
一见喜发布了新的文献求助10
3分钟前
好好好完成签到,获得积分10
3分钟前
3分钟前
Jiangtao完成签到,获得积分10
4分钟前
huyu完成签到 ,获得积分10
4分钟前
4分钟前
SoreThrow发布了新的文献求助10
4分钟前
4分钟前
Leo发布了新的文献求助10
4分钟前
活泼的路人完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880