Fast detection of manufacturing systematic design pattern failures causing device yield loss

计算机科学 产量(工程) 可靠性工程 材料科学 复合材料 工程类
作者
Jean-Christophe Le Denmat,Nelly Feldman,Olivia Riewer,Emek Yesilada,Michel Vallet,Christophe Suzor,Salvatore Talluto
出处
期刊:Proceedings of SPIE
标识
DOI:10.1117/12.2085307
摘要

Starting from the 45nm technology node, systematic defectivity has a significant impact on device yield loss with each new technology node. The effort required to achieve patterning maturity with zero yield detractor is also significantly increasing with technology nodes. Within the manufacturing environment, new in-line wafer inspection methods have been developed to identify device systematic defects, including the process window qualification (PWQ) methodology used to characterize process robustness. Although patterning is characterized with PWQ methodology, some questions remain: How can we demonstrate that the measured process window is large enough to avoid design-based defects which will impact the device yield? Can we monitor the systematic yield loss on nominal wafers? From device test engineering point of view, systematic yield detractors are expected to be identified by Automated Test Pattern Generator (ATPG) test results diagnostics performed after electrical wafer sort (EWS). Test diagnostics can identify failed nets or cells causing systematic yield loss [1],[2]. Convergence from device failed nets and cells to failed manufacturing design pattern are usually based on assumptions that should be confirmed by an electrical failure analysis (EFA). However, many EFA investigations are required before the design pattern failures are found, and thus design pattern failure identification was costly in time and resources. With this situation, an opportunity to share knowledge exists between device test engineering and manufacturing environments to help with device yield improvement. This paper presents a new yield diagnostics flow dedicated to correlation of critical design patterns detected within manufacturing environment, with the observed device yield loss. The results obtained with this new flow on a 28nm technology device are described, with the defects of interest and the device yield impact for each design pattern. The EFA done to validate the design pattern to yield correlation are also presented, including physical cross sections. Finally, the application of this new flow for systematic design pattern yield monitoring, compared to classic inline wafer inspection methods, is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WLL完成签到,获得积分10
刚刚
刚刚
罗mian发布了新的文献求助10
刚刚
轻松的雨旋完成签到,获得积分10
1秒前
星辰大海应助小宇采纳,获得10
1秒前
啦啦啦发布了新的文献求助10
2秒前
zxk完成签到,获得积分10
2秒前
2秒前
3秒前
xjx完成签到 ,获得积分10
3秒前
酷炫大树发布了新的文献求助10
4秒前
orixero应助凶狠的盼柳采纳,获得10
4秒前
阿翼完成签到 ,获得积分10
4秒前
妮露的修狗完成签到,获得积分10
4秒前
乐园完成签到,获得积分10
4秒前
开朗满天完成签到 ,获得积分10
5秒前
5秒前
5秒前
成就缘分发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
li发布了新的文献求助10
6秒前
胡枝子发布了新的文献求助30
7秒前
季悦完成签到,获得积分10
7秒前
BaiX完成签到,获得积分10
7秒前
7秒前
顾矜应助ttssooe采纳,获得10
7秒前
8秒前
共享精神应助罗mian采纳,获得10
8秒前
亭语完成签到 ,获得积分0
9秒前
重要清涟完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
BaiX发布了新的文献求助10
10秒前
10秒前
路旁小白完成签到,获得积分10
10秒前
枫桥完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672