Fast detection of manufacturing systematic design pattern failures causing device yield loss

计算机科学 产量(工程) 可靠性工程 材料科学 复合材料 工程类
作者
Jean-Christophe Le Denmat,Nelly Feldman,Olivia Riewer,Emek Yesilada,Michel Vallet,Christophe Suzor,Salvatore Talluto
出处
期刊:Proceedings of SPIE
标识
DOI:10.1117/12.2085307
摘要

Starting from the 45nm technology node, systematic defectivity has a significant impact on device yield loss with each new technology node. The effort required to achieve patterning maturity with zero yield detractor is also significantly increasing with technology nodes. Within the manufacturing environment, new in-line wafer inspection methods have been developed to identify device systematic defects, including the process window qualification (PWQ) methodology used to characterize process robustness. Although patterning is characterized with PWQ methodology, some questions remain: How can we demonstrate that the measured process window is large enough to avoid design-based defects which will impact the device yield? Can we monitor the systematic yield loss on nominal wafers? From device test engineering point of view, systematic yield detractors are expected to be identified by Automated Test Pattern Generator (ATPG) test results diagnostics performed after electrical wafer sort (EWS). Test diagnostics can identify failed nets or cells causing systematic yield loss [1],[2]. Convergence from device failed nets and cells to failed manufacturing design pattern are usually based on assumptions that should be confirmed by an electrical failure analysis (EFA). However, many EFA investigations are required before the design pattern failures are found, and thus design pattern failure identification was costly in time and resources. With this situation, an opportunity to share knowledge exists between device test engineering and manufacturing environments to help with device yield improvement. This paper presents a new yield diagnostics flow dedicated to correlation of critical design patterns detected within manufacturing environment, with the observed device yield loss. The results obtained with this new flow on a 28nm technology device are described, with the defects of interest and the device yield impact for each design pattern. The EFA done to validate the design pattern to yield correlation are also presented, including physical cross sections. Finally, the application of this new flow for systematic design pattern yield monitoring, compared to classic inline wafer inspection methods, is discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SinU应助宋宋采纳,获得10
刚刚
luosong发布了新的文献求助10
1秒前
Jiang完成签到,获得积分10
1秒前
Liar应助cc2941采纳,获得10
1秒前
WangRui完成签到,获得积分10
1秒前
2秒前
贰鸟应助fwch采纳,获得20
3秒前
123完成签到,获得积分10
3秒前
Lori完成签到,获得积分10
4秒前
popo6150完成签到,获得积分10
5秒前
开心完成签到,获得积分10
6秒前
zhaoxi完成签到 ,获得积分10
6秒前
奇怪的柒完成签到 ,获得积分10
7秒前
无花果应助木木采纳,获得10
7秒前
聚乙二醇完成签到 ,获得积分10
7秒前
科研小达人完成签到,获得积分10
8秒前
wenbo发布了新的文献求助10
8秒前
qianshu完成签到,获得积分10
8秒前
ZZzz完成签到 ,获得积分10
9秒前
充电宝应助123采纳,获得10
9秒前
CWNU_HAN应助洁净之柔采纳,获得30
9秒前
9秒前
sunshine完成签到,获得积分10
11秒前
无语的小馒头完成签到,获得积分10
12秒前
欣然起行l完成签到,获得积分10
12秒前
12秒前
秦磊完成签到,获得积分10
13秒前
13秒前
萝卜猪完成签到,获得积分10
14秒前
魔法披风完成签到,获得积分10
14秒前
luosong完成签到,获得积分10
14秒前
干净的天奇完成签到 ,获得积分10
14秒前
WTC完成签到 ,获得积分10
15秒前
vivi完成签到,获得积分10
15秒前
yyyyyqy完成签到,获得积分10
15秒前
轻松狗完成签到,获得积分10
15秒前
15秒前
不回首完成签到 ,获得积分10
16秒前
柠檬酸盐汽水完成签到,获得积分10
16秒前
庄默羽完成签到,获得积分10
16秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169