Build-Up Algorithm for Atomic Correspondence between Chemical Structures

算法 下部结构 启发式 集团 度量(数据仓库) 相似性(几何) 计算机科学 计算 贪婪算法 价值(数学) Atom(片上系统) 数学 人工智能 组合数学 数据挖掘 图像(数学) 机器学习 结构工程 工程类 嵌入式系统
作者
Takeshi Kawabata
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:51 (8): 1775-1787 被引量:70
标识
DOI:10.1021/ci2001023
摘要

Determining a one-to-one atom correspondence between two chemical compounds is important to measure molecular similarities and to find compounds with similar biological activities. This calculation can be formalized as the maximum common substructure (MCS) problem, which is well-studied and has been shown to be NP-complete. Although many rigorous and heuristic algorithms have been developed, none of these algorithms is sufficiently fast and accurate. We developed a new program, called "kcombu" using a build-up algorithm, which is a type of the greedy heuristic algorithms. The program can search connected and disconnected MCSs as well as topologically constrained disconnected MCS (TD-MCS), which is introduced in this study. To evaluate the performance of our program, we prepared two correct standards: the exact correspondences generated by the maximum clique algorithms and the 3D correspondences obtained from superimposed 3D structure of the molecules in a complex 3D structure with the same protein. For the five sets of molecules taken from the protein structure database, the agreement value between the build-up and the exact correspondences for the connected MCS is sufficiently high, but the computation time of the build-up algorithm is much smaller than that of the exact algorithm. The comparison between the build-up and the 3D correspondences shows that the TD-MCS has the best agreement value among the other types of MCS. Additionally, we observed a strong correlation between the molecular similarity and the agreement with the correct and 3D correspondences; more similar molecule pairs are more correctly matched. Molecular pairs with more than 40% Tanimoto similarities can be correctly matched for more than half of the atoms with the 3D correspondences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许元冬完成签到,获得积分10
刚刚
学渣本渣发布了新的文献求助10
1秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
4秒前
蒋蒋完成签到,获得积分20
4秒前
4秒前
无聊的霸完成签到,获得积分10
6秒前
小s发布了新的文献求助10
9秒前
朱少龙发布了新的文献求助10
14秒前
14秒前
科研凡发布了新的文献求助10
16秒前
自由秋荷完成签到,获得积分10
16秒前
天天开心完成签到,获得积分10
18秒前
陈少华完成签到,获得积分10
18秒前
时尚凝云发布了新的文献求助10
19秒前
怀忑完成签到,获得积分10
20秒前
思源应助开飞机的小羊采纳,获得10
22秒前
蒋蒋发布了新的文献求助10
22秒前
22秒前
刍青完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
30秒前
30秒前
上官若男应助蒋蒋采纳,获得10
31秒前
capitalist完成签到,获得积分10
32秒前
DoctorHao发布了新的文献求助30
33秒前
33秒前
酷酷流沙发布了新的文献求助10
34秒前
神奇阳光发布了新的文献求助10
34秒前
房山芙发布了新的文献求助10
34秒前
你好应助nilu采纳,获得10
35秒前
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464