离散对数
数学
椭圆曲线
配对
对数
跟踪(心理语言学)
还原(数学)
一般化
模
纯数学
爱德华兹曲线
简单(哲学)
离散数学
有限域
斯科夫算法
数学分析
公钥密码术
计算机科学
几何学
季度期间
物理
加密
语言学
超导电性
哲学
认识论
量子力学
操作系统
作者
Theodoulos Garefalakis
标识
DOI:10.1016/j.tcs.2003.06.002
摘要
We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields. We show that the new pairing can be computed efficiently for curves with trace of Frobenius congruent to 2 modulo the order of the base point. This leads to an efficient reduction for this class of curves. The reduction is as simple to construct as that of Menezes et al. (IEEE Trans. Inform. Theory, 39, 1993), and is provably equivalent to that of Frey and Rück (Math. Comput. 62 (206) (1994) 865).
科研通智能强力驱动
Strongly Powered by AbleSci AI