Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors

材料科学 化学工程 纳米复合材料 溶剂 纳米颗粒 自愈水凝胶 蒸发 动态力学分析 纳米技术 聚合物 高分子化学 复合材料 化学 有机化学 热力学 物理 工程类
作者
Yufan Feng,Jie Yu,Dan Sun,Wenfeng Ren,Changyou Shao,Run‐Cang Sun
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:433: 133202-133202 被引量:79
标识
DOI:10.1016/j.cej.2021.133202
摘要

Despite the remarkable progress in efforts to fabricate flexible and wearable sensors based on the conductive hydrogels has been witnessed in recent years, the traditional conductive hydrogels still suffer from poor mechanical properties and intrinsic instability owing to the inevitable freeze at low temperature and water evaporation at room temperature, severely limiting their practical applications. Herein, we developed a robust and conductive lignin-based nanocomposite organogel with extreme temperature tolerance and long-lasting moisture, which is prepared in a binary-solvent system composed of dimethyl sulfoxide (DMSO) and water. Notably, the incorporation of DMSO/H2O binary solvent facilitates the transformation from lignin macromolecules into nanoparticles by self-assembly method, leading to the significant mechanical reinforcement of the obtained polyvinyl alcohol-lignin nanoparticle (PVA-LN) organogel. Meanwhile, the formation of a large amount of hydrogen bonds between DMSO and water molecules prevented the generation of ice crystals, and the water evaporation was hindered simultaneously. Thus, the PVA-LN organogel exhibited incredible freezing tolerance (-80 °C) and remarkable long-lasting moisture (88% weight retention after 7 days), remaining stable mechanical flexibility and electrical conductivity in a wide temperature range. In addition, profited from the high strain sensitivity, fast response time, and excellent stability, the PVA-LN organogels were applicable to be assembled into flexible strain sensors to detect large human motions and subtle physiological signals even at extreme environments. It is envisioned that this work opens up a new prospect for the design of the stretchable biomass-based hydrogels with strain-sensitive properties for potential applications in flexible wearable electronics and healthcare monitoring in a broad temperature range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZX801发布了新的文献求助10
刚刚
问下他发布了新的文献求助10
1秒前
1秒前
搞怪迎夏应助加菲丰丰采纳,获得10
2秒前
dlair驳回了jiyinku应助
2秒前
CodeCraft应助郷禦采纳,获得10
2秒前
漠之梦发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
动听糖豆关注了科研通微信公众号
3秒前
莹仔发布了新的文献求助10
4秒前
丰富的大白菜真实的钥匙完成签到,获得积分10
4秒前
Oyster7应助现代百招采纳,获得10
4秒前
顾矜应助yangbing123采纳,获得10
4秒前
spark发布了新的文献求助20
4秒前
小二郎应助问下他采纳,获得10
5秒前
Hello应助haoran采纳,获得10
6秒前
6秒前
高高高应助sun采纳,获得10
6秒前
银河以北鸿艳最美完成签到,获得积分10
6秒前
6秒前
7秒前
Cameron发布了新的文献求助10
7秒前
新楚发布了新的文献求助10
8秒前
Akim应助银河以北鸿艳最美采纳,获得10
9秒前
sasa发布了新的文献求助10
9秒前
爆米花应助Xie采纳,获得10
9秒前
9秒前
饱满的平安完成签到,获得积分10
10秒前
CipherSage应助晓晓雪采纳,获得10
10秒前
annter发布了新的文献求助10
11秒前
wli4286完成签到,获得积分10
11秒前
11秒前
赵田发布了新的文献求助10
12秒前
香蕉觅云应助ZX801采纳,获得10
12秒前
kk完成签到,获得积分20
12秒前
科目三应助彩色的诗桃采纳,获得10
14秒前
八九寺完成签到,获得积分10
14秒前
MOB完成签到,获得积分10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227691
求助须知:如何正确求助?哪些是违规求助? 2875664
关于积分的说明 8192122
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373179
科研通“疑难数据库(出版商)”最低求助积分说明 646710
邀请新用户注册赠送积分活动 621181