Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

多传感器集成 知觉 心理学 感觉系统 对象(语法) 视觉对象识别的认知神经科学 计算机科学 沟通 感知 神经科学 人工智能
作者
Tiziana Vercillo,Edward G. Freedman,Joshua B. Ewen,Sophie Molholm,John J. Foxe
标识
DOI:10.1101/2021.11.15.468657
摘要

ABSTRACT Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multisensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助1234567采纳,获得10
刚刚
张小科完成签到,获得积分10
刚刚
weiping发布了新的文献求助10
1秒前
2秒前
负责丹亦完成签到,获得积分10
5秒前
6秒前
lamb完成签到 ,获得积分10
6秒前
6秒前
7秒前
luna完成签到 ,获得积分10
7秒前
8秒前
猫小海发布了新的文献求助10
9秒前
10秒前
DX发布了新的文献求助10
11秒前
11秒前
11秒前
黄静薇完成签到,获得积分10
13秒前
14秒前
maguodrgon发布了新的文献求助10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
老阎应助科研通管家采纳,获得30
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
多情高丽发布了新的文献求助10
17秒前
猫小海完成签到,获得积分10
18秒前
19秒前
CodeCraft应助咕噜采纳,获得10
23秒前
科研蛀虫完成签到 ,获得积分20
24秒前
卓聪健完成签到 ,获得积分10
25秒前
英俊的铭应助彳系禾采纳,获得10
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373683
求助须知:如何正确求助?哪些是违规求助? 4499724
关于积分的说明 14007089
捐赠科研通 4406596
什么是DOI,文献DOI怎么找? 2420552
邀请新用户注册赠送积分活动 1413357
关于科研通互助平台的介绍 1389902