Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

多传感器集成 知觉 心理学 感觉系统 对象(语法) 视觉对象识别的认知神经科学 计算机科学 沟通 感知 神经科学 人工智能
作者
Tiziana Vercillo,Edward G. Freedman,Joshua B. Ewen,Sophie Molholm,John J. Foxe
标识
DOI:10.1101/2021.11.15.468657
摘要

ABSTRACT Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multisensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘倩发布了新的文献求助10
刚刚
SciGPT应助六尺巷采纳,获得10
1秒前
CNS关注了科研通微信公众号
1秒前
1秒前
小七完成签到,获得积分10
2秒前
深情安青应助RacA采纳,获得10
2秒前
怜然发布了新的文献求助10
2秒前
wwww发布了新的文献求助10
3秒前
LTT发布了新的文献求助10
3秒前
222123发布了新的文献求助30
3秒前
秘密发布了新的文献求助10
5秒前
刘小小123完成签到,获得积分10
5秒前
anders完成签到 ,获得积分10
6秒前
浮游应助刘倩采纳,获得10
6秒前
可爱的函函应助刘倩采纳,获得10
6秒前
6秒前
袁气小笼包完成签到,获得积分10
6秒前
科研通AI6应助社牛小柯采纳,获得10
7秒前
Lucas应助佚名采纳,获得10
7秒前
morris完成签到,获得积分10
7秒前
8秒前
miaomiao发布了新的文献求助10
9秒前
wanci应助嗯嗯哈哈采纳,获得10
9秒前
阔达宝莹发布了新的文献求助10
10秒前
欧贤书发布了新的文献求助10
11秒前
充电宝应助鱼会淹死吗采纳,获得30
12秒前
zzz完成签到,获得积分10
13秒前
刘倩完成签到,获得积分10
13秒前
14秒前
英姑应助含蓄的安蕾采纳,获得10
15秒前
小鱼完成签到,获得积分10
15秒前
兰高锋完成签到,获得积分10
15秒前
科研通AI2S应助vidi采纳,获得10
17秒前
科研通AI6应助qaz采纳,获得10
17秒前
18秒前
奋斗的橘子完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
我我我完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704