Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

多传感器集成 知觉 心理学 感觉系统 对象(语法) 视觉对象识别的认知神经科学 计算机科学 沟通 感知 神经科学 人工智能
作者
Tiziana Vercillo,Edward G. Freedman,Joshua B. Ewen,Sophie Molholm,John J. Foxe
标识
DOI:10.1101/2021.11.15.468657
摘要

ABSTRACT Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multisensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十二十三发布了新的文献求助10
3秒前
4秒前
4秒前
6秒前
6秒前
杨文献发布了新的文献求助10
6秒前
正在下雨完成签到,获得积分10
7秒前
苗条盼山发布了新的文献求助10
8秒前
梁晓雯发布了新的文献求助10
9秒前
Hello应助song采纳,获得10
9秒前
十二十三完成签到,获得积分10
10秒前
liaoyoujiao完成签到,获得积分10
10秒前
xiadu完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
刘培恒发布了新的文献求助10
12秒前
冉冉发布了新的文献求助10
12秒前
13秒前
carol7298完成签到 ,获得积分10
14秒前
cwb完成签到,获得积分10
14秒前
14秒前
bkagyin应助苗条盼山采纳,获得10
15秒前
苗浩阳完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
五块墓碑完成签到,获得积分10
19秒前
张三完成签到 ,获得积分10
19秒前
20秒前
淡然的昊焱完成签到,获得积分20
22秒前
一只猪完成签到 ,获得积分20
22秒前
Lucas应助懦弱的安珊采纳,获得10
23秒前
英吉利25发布了新的文献求助10
23秒前
23秒前
欣欣发布了新的文献求助10
23秒前
24秒前
25秒前
所所应助124_dfs采纳,获得10
26秒前
完美世界应助张晨旭采纳,获得30
27秒前
安之发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737072
求助须知:如何正确求助?哪些是违规求助? 5370628
关于积分的说明 15334769
捐赠科研通 4880833
什么是DOI,文献DOI怎么找? 2623041
邀请新用户注册赠送积分活动 1571886
关于科研通互助平台的介绍 1528738