重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

多传感器集成 知觉 心理学 感觉系统 对象(语法) 视觉对象识别的认知神经科学 计算机科学 沟通 感知 神经科学 人工智能
作者
Tiziana Vercillo,Edward G. Freedman,Joshua B. Ewen,Sophie Molholm,John J. Foxe
标识
DOI:10.1101/2021.11.15.468657
摘要

ABSTRACT Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multisensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默尔蓝发布了新的文献求助10
刚刚
Akim应助笑点低涟妖采纳,获得10
1秒前
2秒前
孤独千愁发布了新的文献求助10
2秒前
Owen应助Zo采纳,获得30
2秒前
2秒前
2秒前
3秒前
Lolo发布了新的文献求助10
3秒前
anling完成签到,获得积分10
3秒前
鱿鱼发布了新的文献求助20
3秒前
包容灵萱完成签到,获得积分10
3秒前
梓时发布了新的文献求助30
3秒前
yxli完成签到,获得积分10
4秒前
4秒前
5秒前
优美白凝关注了科研通微信公众号
5秒前
5秒前
天天快乐应助rong_liang采纳,获得20
5秒前
动听的蛟凤完成签到,获得积分10
5秒前
6秒前
6秒前
Hou发布了新的文献求助10
6秒前
xm完成签到 ,获得积分10
6秒前
zain发布了新的文献求助10
7秒前
xz发布了新的文献求助80
7秒前
lz完成签到,获得积分10
7秒前
草莓布丁应助Jeux采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
飘逸小凝发布了新的文献求助10
8秒前
邵邵完成签到,获得积分10
8秒前
9秒前
会飞的鱼完成签到,获得积分10
9秒前
四海发布了新的文献求助10
9秒前
10秒前
科研通AI6应助聪慧的从雪采纳,获得10
10秒前
Zzhn发布了新的文献求助10
11秒前
Codd发布了新的文献求助10
11秒前
11秒前
梁某完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654