已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning a new class of multisensory associations: High-density electrophysiological mapping of the temporal course of audio-visual object processing.

多传感器集成 知觉 心理学 感觉系统 对象(语法) 视觉对象识别的认知神经科学 计算机科学 沟通 感知 神经科学 人工智能
作者
Tiziana Vercillo,Edward G. Freedman,Joshua B. Ewen,Sophie Molholm,John J. Foxe
标识
DOI:10.1101/2021.11.15.468657
摘要

ABSTRACT Multisensory objects that are frequently encountered in the natural environment lead to strong associations across a distributed sensory cortical network, with the end result experience of a unitary percept. Remarkably little is known, however, about the cortical processes sub-serving multisensory object formation and recognition. To advance our understanding in this important domain, the present study investigated the brain processes involved in learning and identification of novel visual-auditory objects. Specifically, we introduce and test a rudimentary three-stage model of multisensory object-formation and processing. Thirty adults were remotely trained for a week to recognize a novel class of multisensory objects (3D shapes paired to complex sounds), and high-density event related potentials (ERPs) were recorded to the corresponding unisensory (shapes or sounds only) and multisensory (shapes and sounds) stimuli, before and after intensive training. We identified three major stages of multisensory processing: 1) an early, multisensory, automatic effect (<100 ms) in occipital areas, related to the detection of simultaneous audiovisual signals and not related to multisensory learning 2) an intermediate object-processing stage (100-200 ms) in occipital and parietal areas, sensitive to the learned multisensory associations and 3) a late multisensory processing stage (>250 ms) that appears to be involved in both object recognition and possibly memory consolidation. Results from this study provide support for multiple stages of multisensory object learning and recognition that are subserved by an extended network of cortical areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑访云发布了新的文献求助10
1秒前
科目三应助玲珑油豆腐采纳,获得10
1秒前
ppp发布了新的文献求助10
2秒前
慕青应助Aokcers采纳,获得10
6秒前
YAN完成签到 ,获得积分10
6秒前
浮游应助sentimental采纳,获得10
7秒前
YUkiii完成签到,获得积分10
7秒前
雨下整夜完成签到,获得积分10
9秒前
9秒前
桐桐应助和谐又菡采纳,获得10
9秒前
炙热的小小完成签到 ,获得积分10
9秒前
SciGPT应助百杜采纳,获得10
10秒前
Criminology34应助毛月月采纳,获得10
10秒前
12秒前
爱笑的如霜完成签到,获得积分20
13秒前
学术五车发布了新的文献求助10
14秒前
15秒前
拾肆发布了新的文献求助10
15秒前
在下天池宫人间行走完成签到,获得积分10
15秒前
YUkiii发布了新的文献求助10
16秒前
16秒前
zai发布了新的文献求助10
16秒前
17秒前
17秒前
微笑的井完成签到 ,获得积分10
18秒前
暗中讨饭完成签到 ,获得积分10
18秒前
18秒前
18秒前
11完成签到 ,获得积分10
18秒前
Aokcers发布了新的文献求助10
20秒前
21秒前
dongdong发布了新的文献求助10
23秒前
科研通AI6应助彪壮的凡波采纳,获得10
23秒前
小王同学应助blue采纳,获得20
24秒前
24秒前
隐形曼青应助Wenyilong采纳,获得10
25秒前
25秒前
25秒前
cjg完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055