医学
恶性肿瘤
肺癌
队列
放射科
肺科医生
回顾性队列研究
肺癌筛查
结核(地质)
癌症
肺
接收机工作特性
内科学
生物
古生物学
重症监护医学
作者
Kiran Vaidhya Venkadesh,Arnaud Arindra Adiyoso Setio,Anton Schreuder,Ernst Th. Scholten,Kaman Chung,Mathilde Marie Winkler Wille,Zaigham Saghir,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology
[Radiological Society of North America]
日期:2021-08-01
卷期号:300 (2): 438-447
被引量:65
标识
DOI:10.1148/radiol.2021204433
摘要
Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three cohorts collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tammemägi in this issue.
科研通智能强力驱动
Strongly Powered by AbleSci AI