Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

医学 恶性肿瘤 放射科 核医学 内科学
作者
Kiran Vaidhya Venkadesh,Arnaud Arindra Adiyoso Setio,Anton Schreuder,Ernst T. Scholten,Kaman Chung,Mathilde Marie Winkler Wille,Zaigham Saghir,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (2): 438-447 被引量:103
标识
DOI:10.1148/radiol.2021204433
摘要

Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected -between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three -cohorts -collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 -malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 -nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tammemägi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
veraonly发布了新的文献求助30
刚刚
伏城发布了新的文献求助10
刚刚
沧笙踏歌发布了新的文献求助60
1秒前
1秒前
YingLi完成签到,获得积分10
2秒前
2秒前
3秒前
NexusExplorer应助酷酷的盼山采纳,获得10
3秒前
labill发布了新的文献求助10
3秒前
4秒前
water发布了新的文献求助10
5秒前
lan发布了新的文献求助10
6秒前
gar发布了新的文献求助10
6秒前
小咸鱼完成签到 ,获得积分10
6秒前
浪而而完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
共享精神应助iMoney采纳,获得10
8秒前
9秒前
DamonFri发布了新的文献求助10
9秒前
憨憨兔子完成签到,获得积分10
9秒前
9秒前
忧郁芒果完成签到,获得积分10
10秒前
哈基米发布了新的文献求助10
10秒前
搜集达人应助veraonly采纳,获得10
11秒前
zizziai完成签到 ,获得积分10
12秒前
哈哈爷发布了新的文献求助10
12秒前
室内设计发布了新的文献求助10
13秒前
温柔薯片完成签到,获得积分20
13秒前
个性盼易关注了科研通微信公众号
13秒前
火星上誉发布了新的文献求助10
14秒前
15秒前
香蕉梨愁完成签到,获得积分10
16秒前
pp63完成签到,获得积分10
16秒前
17秒前
lmq完成签到,获得积分10
17秒前
儒雅的幻然完成签到,获得积分10
18秒前
18秒前
彭于彦祖应助lerrygg采纳,获得20
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344