Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

医学 恶性肿瘤 放射科 核医学 内科学
作者
Kiran Vaidhya Venkadesh,Arnaud A. A. Setio,Anton Schreuder,Ernst T. Scholten,Kaman Chung,Mathilde Marie Winkler Wille,Zaigham Saghir,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (2): 438-447 被引量:123
标识
DOI:10.1148/radiol.2021204433
摘要

Background: Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose: To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods: In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three cohorts collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results: The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion: The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AAA发布了新的文献求助10
1秒前
甜蜜乐松发布了新的文献求助10
2秒前
北川宾一完成签到,获得积分10
3秒前
随便发布了新的文献求助10
3秒前
4秒前
CipherSage应助王莫为采纳,获得10
4秒前
5秒前
5秒前
桐桐应助zkyyy采纳,获得10
6秒前
6秒前
林深沉发布了新的文献求助10
7秒前
NiuNiu发布了新的文献求助10
8秒前
8秒前
FashionBoy应助猛犸象冲冲冲采纳,获得10
8秒前
小赐完成签到,获得积分20
9秒前
9秒前
星辰大海应助马子妍采纳,获得10
9秒前
lala发布了新的文献求助10
10秒前
JamesPei应助444采纳,获得10
10秒前
玄天明月完成签到 ,获得积分10
10秒前
Ztx发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Lyy发布了新的文献求助10
11秒前
12秒前
糖糖完成签到 ,获得积分10
12秒前
优美紫槐发布了新的文献求助10
12秒前
清爽的芷蕾完成签到,获得积分10
12秒前
认真做毕设的沙子完成签到,获得积分20
13秒前
欣喜觅风完成签到 ,获得积分10
13秒前
13秒前
思源应助phil采纳,获得10
14秒前
领导范儿应助凝子老师采纳,获得10
14秒前
王莫为发布了新的文献求助10
14秒前
孟龙威发布了新的文献求助10
15秒前
15秒前
李爱国应助悦耳的曼安采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605669
求助须知:如何正确求助?哪些是违规求助? 4690288
关于积分的说明 14863003
捐赠科研通 4702367
什么是DOI,文献DOI怎么找? 2542226
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142