Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

医学 恶性肿瘤 放射科 核医学 内科学
作者
Kiran Vaidhya Venkadesh,Arnaud Arindra Adiyoso Setio,Anton Schreuder,Ernst T. Scholten,Kaman Chung,Mathilde Marie Winkler Wille,Zaigham Saghir,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (2): 438-447 被引量:103
标识
DOI:10.1148/radiol.2021204433
摘要

Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected -between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three -cohorts -collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 -malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 -nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tammemägi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanli445完成签到,获得积分10
1秒前
科研通AI2S应助satchzhao采纳,获得10
1秒前
是小程啊完成签到 ,获得积分10
1秒前
琪琪扬扬完成签到,获得积分10
2秒前
11111完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
fatal完成签到,获得积分10
5秒前
过分动真发布了新的文献求助20
5秒前
高贵的夜南完成签到,获得积分10
5秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
5秒前
6秒前
尺素寸心发布了新的文献求助10
7秒前
orixero应助BOSLobster采纳,获得10
8秒前
orixero应助yatou5651采纳,获得10
9秒前
在水一方应助卡卡采纳,获得10
9秒前
追寻羿完成签到 ,获得积分10
10秒前
hhzz发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
13秒前
科研通AI2S应助好玩和有趣采纳,获得10
13秒前
美丽跳跳糖完成签到,获得积分20
13秒前
13秒前
丘比特应助llll采纳,获得10
14秒前
14秒前
迟大猫应助su采纳,获得10
14秒前
发嗲的戎完成签到 ,获得积分10
15秒前
15秒前
内向凌兰完成签到,获得积分10
15秒前
15秒前
zhappy完成签到,获得积分10
16秒前
satchzhao发布了新的文献求助10
16秒前
友好的妍完成签到 ,获得积分10
17秒前
香山叶正红完成签到 ,获得积分10
18秒前
TOM发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808