已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

医学 恶性肿瘤 肺癌 队列 放射科 肺科医生 回顾性队列研究 肺癌筛查 结核(地质) 癌症 接收机工作特性 内科学 生物 古生物学 重症监护医学
作者
Kiran Vaidhya Venkadesh,Arnaud Arindra Adiyoso Setio,Anton Schreuder,Ernst Th. Scholten,Kaman Chung,Mathilde Marie Winkler Wille,Zaigham Saghir,Bram van Ginneken,Mathias Prokop,Colin Jacobs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (2): 438-447 被引量:65
标识
DOI:10.1148/radiol.2021204433
摘要

Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected ­between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three ­cohorts ­collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 ­malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 ­nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tammemägi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑冰棍完成签到 ,获得积分10
1秒前
Liyipu完成签到 ,获得积分10
2秒前
闪闪善若完成签到 ,获得积分20
2秒前
大家好完成签到 ,获得积分10
2秒前
3秒前
6秒前
友好冥王星完成签到 ,获得积分10
7秒前
冰糖葫芦娃完成签到 ,获得积分10
8秒前
怡然诗翠发布了新的文献求助10
9秒前
狗十七完成签到 ,获得积分10
10秒前
古凊完成签到 ,获得积分10
10秒前
程小懒完成签到,获得积分10
12秒前
13秒前
zjz完成签到,获得积分10
13秒前
独特的孤丹完成签到 ,获得积分10
15秒前
阿衍完成签到 ,获得积分10
18秒前
何三岁完成签到,获得积分10
21秒前
23秒前
一只小锦鲤完成签到,获得积分10
24秒前
WX完成签到,获得积分10
27秒前
虚心的惮完成签到 ,获得积分10
28秒前
28秒前
书中魂我自不理会完成签到 ,获得积分10
28秒前
Twistti完成签到 ,获得积分10
29秒前
草莓啵啵兔完成签到 ,获得积分10
30秒前
姜淮完成签到 ,获得积分10
30秒前
soar完成签到 ,获得积分10
31秒前
AnJaShua完成签到 ,获得积分10
32秒前
33秒前
34秒前
怡然诗翠关注了科研通微信公众号
34秒前
hui_L完成签到,获得积分20
35秒前
NULI完成签到 ,获得积分10
36秒前
w1x2123完成签到,获得积分10
37秒前
37秒前
星星完成签到 ,获得积分10
38秒前
快乐的迷勒完成签到,获得积分10
39秒前
999完成签到,获得积分10
40秒前
只如初完成签到,获得积分10
40秒前
成熟稳重痴情完成签到,获得积分10
41秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139375
求助须知:如何正确求助?哪些是违规求助? 2790295
关于积分的说明 7794840
捐赠科研通 2446748
什么是DOI,文献DOI怎么找? 1301351
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141