Soft and Self‐Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling

石墨烯 材料科学 热导率 微电子 化学气相沉积 光电子学 散热片 复合材料 散热膏 纳米技术 工程类 电气工程
作者
Qingwei Yan,Fakhr E. Alam,Jingyao Gao,Wen Dai,Xue Tan,Le Lv,Junjie Wang,Huan Zhang,Ding Chen,Kazuhito Nishimura,Liping Wang,Jinhong Yu,Jibao Lu,Rong Sun,Rong Xiang,Shigeo Maruyama,Hang Zhang,Sudong Wu,Nan Jiang,Cheng‐Te Lin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (36) 被引量:160
标识
DOI:10.1002/adfm.202104062
摘要

Abstract Urged by the increasing power and packing densities of integrated circuits and electronic devices, efficient dissipation of excess heat from hot spot to heat sink through thermal interface materials (TIMs) is a growing demand to maintain system reliability and performance. In recent years, graphene‐based TIMs received considerable interest due to the ultrahigh intrinsic thermal conductivity of graphene. However, the cooling efficiency of such TIMs is still limited by some technical difficulties, such as production‐induced defects of graphene, poor alignment of graphene in the matrix, and strong phonon scattering at graphene/graphene or graphene/matrix interfaces. In this study, a 120 µ m‐thick freestanding film composed of vertically aligned, covalently bonded graphene nanowalls (GNWs) is grown by mesoplasma chemical vapor deposition. After filling GNWs with silicone, the fabricated adhesive TIMs exhibit a high through‐plane thermal conductivity of 20.4 W m −1 K −1 at a low graphene loading of 5.6 wt%. In the TIM performance test, the cooling efficiency of GNW‐based TIMs is ≈ 1.5 times higher than that of state‐of‐the‐art commercial TIMs. The TIMs achieve the desired balance between high through‐plane thermal conductivity and small bond line thickness, providing superior cooling performance for suppressing the degradation of luminous properties of high‐power light‐emitting diode chips.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星晴完成签到,获得积分10
刚刚
Geass发布了新的文献求助10
刚刚
小柒完成签到,获得积分10
1秒前
崔洪瑞完成签到,获得积分10
1秒前
莫mo完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
桐桐应助抹茶芝士酸奶采纳,获得10
4秒前
4秒前
科研通AI6应助科研小魏采纳,获得10
5秒前
莫mo关注了科研通微信公众号
5秒前
5秒前
6秒前
充电宝应助panda_123采纳,获得10
6秒前
7秒前
7秒前
7秒前
芒果爸爸发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
行走人生发布了新的文献求助30
12秒前
12秒前
eryu25完成签到 ,获得积分10
12秒前
wmtttttt发布了新的文献求助10
12秒前
所所应助周伊采纳,获得10
13秒前
14秒前
以鹿之路发布了新的文献求助10
15秒前
张骥发布了新的文献求助20
15秒前
猕猴桃完成签到,获得积分10
16秒前
jbg完成签到 ,获得积分10
17秒前
海绵宝宝发布了新的文献求助10
17秒前
17秒前
17秒前
DrQyQ发布了新的文献求助10
18秒前
hh发布了新的文献求助10
18秒前
Akim应助zqgxiangbiye采纳,获得10
19秒前
土豆泥泥关注了科研通微信公众号
21秒前
Akim应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649821
求助须知:如何正确求助?哪些是违规求助? 4779250
关于积分的说明 15050421
捐赠科研通 4808796
什么是DOI,文献DOI怎么找? 2571853
邀请新用户注册赠送积分活动 1528134
关于科研通互助平台的介绍 1486877