Soft and Self‐Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling

石墨烯 材料科学 热导率 微电子 化学气相沉积 光电子学 散热片 复合材料 散热膏 纳米技术 工程类 电气工程
作者
Qingwei Yan,Fakhr E. Alam,Jingyao Gao,Wen Dai,Xue Tan,Le Lv,Junjie Wang,Huan Zhang,Ding Chen,Kazuhito Nishimura,Liping Wang,Jinhong Yu,Jibao Lu,Rong Sun,Rong Xiang,Shigeo Maruyama,Hang Zhang,Sudong Wu,Nan Jiang,Cheng‐Te Lin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (36) 被引量:160
标识
DOI:10.1002/adfm.202104062
摘要

Abstract Urged by the increasing power and packing densities of integrated circuits and electronic devices, efficient dissipation of excess heat from hot spot to heat sink through thermal interface materials (TIMs) is a growing demand to maintain system reliability and performance. In recent years, graphene‐based TIMs received considerable interest due to the ultrahigh intrinsic thermal conductivity of graphene. However, the cooling efficiency of such TIMs is still limited by some technical difficulties, such as production‐induced defects of graphene, poor alignment of graphene in the matrix, and strong phonon scattering at graphene/graphene or graphene/matrix interfaces. In this study, a 120 µ m‐thick freestanding film composed of vertically aligned, covalently bonded graphene nanowalls (GNWs) is grown by mesoplasma chemical vapor deposition. After filling GNWs with silicone, the fabricated adhesive TIMs exhibit a high through‐plane thermal conductivity of 20.4 W m −1 K −1 at a low graphene loading of 5.6 wt%. In the TIM performance test, the cooling efficiency of GNW‐based TIMs is ≈ 1.5 times higher than that of state‐of‐the‐art commercial TIMs. The TIMs achieve the desired balance between high through‐plane thermal conductivity and small bond line thickness, providing superior cooling performance for suppressing the degradation of luminous properties of high‐power light‐emitting diode chips.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alex12259完成签到 ,获得积分10
6秒前
喜文完成签到 ,获得积分10
8秒前
今我来思完成签到 ,获得积分10
12秒前
小钥匙完成签到 ,获得积分10
13秒前
王kk完成签到 ,获得积分10
13秒前
wang完成签到,获得积分10
16秒前
mayzee完成签到,获得积分10
17秒前
qinqiny完成签到 ,获得积分0
18秒前
21秒前
健忘的雨安完成签到,获得积分10
22秒前
细腻无春完成签到 ,获得积分10
24秒前
青水完成签到 ,获得积分10
24秒前
26秒前
一路有你完成签到 ,获得积分10
26秒前
望道完成签到,获得积分10
27秒前
Lee_yuan发布了新的文献求助10
32秒前
xiaoxiao完成签到 ,获得积分10
34秒前
短巷完成签到 ,获得积分0
43秒前
Aimee完成签到 ,获得积分10
43秒前
朝花夕拾完成签到,获得积分0
46秒前
别致的小五完成签到 ,获得积分10
47秒前
忧虑的墨镜完成签到 ,获得积分10
50秒前
望凌烟完成签到,获得积分10
53秒前
AA完成签到 ,获得积分10
55秒前
甜甜的tiantian完成签到 ,获得积分10
58秒前
wuqi完成签到,获得积分10
1分钟前
香蕉大侠完成签到 ,获得积分10
1分钟前
研友_LmVygn完成签到 ,获得积分10
1分钟前
霸气南珍完成签到,获得积分10
1分钟前
优雅莞完成签到,获得积分0
1分钟前
谦让的含海完成签到,获得积分10
1分钟前
辛勤的囧完成签到,获得积分10
1分钟前
MC123完成签到,获得积分10
1分钟前
wsafhgfjb完成签到,获得积分10
1分钟前
1分钟前
黄启烽完成签到,获得积分10
1分钟前
文献属于所有科研人关注了科研通微信公众号
1分钟前
啦啦啦啦啦完成签到,获得积分10
1分钟前
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136