Soft and Self‐Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling

石墨烯 材料科学 热导率 微电子 化学气相沉积 光电子学 散热片 复合材料 散热膏 纳米技术 工程类 电气工程
作者
Qingwei Yan,Fakhr E. Alam,Jingyao Gao,Wen Dai,Xue Tan,Le Lv,Junjie Wang,Huan Zhang,Ding Chen,Kazuhito Nishimura,Liping Wang,Jinhong Yu,Jibao Lu,Rong Sun,Rong Xiang,Shigeo Maruyama,Hang Zhang,Sudong Wu,Nan Jiang,Cheng‐Te Lin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (36) 被引量:160
标识
DOI:10.1002/adfm.202104062
摘要

Abstract Urged by the increasing power and packing densities of integrated circuits and electronic devices, efficient dissipation of excess heat from hot spot to heat sink through thermal interface materials (TIMs) is a growing demand to maintain system reliability and performance. In recent years, graphene‐based TIMs received considerable interest due to the ultrahigh intrinsic thermal conductivity of graphene. However, the cooling efficiency of such TIMs is still limited by some technical difficulties, such as production‐induced defects of graphene, poor alignment of graphene in the matrix, and strong phonon scattering at graphene/graphene or graphene/matrix interfaces. In this study, a 120 µ m‐thick freestanding film composed of vertically aligned, covalently bonded graphene nanowalls (GNWs) is grown by mesoplasma chemical vapor deposition. After filling GNWs with silicone, the fabricated adhesive TIMs exhibit a high through‐plane thermal conductivity of 20.4 W m −1 K −1 at a low graphene loading of 5.6 wt%. In the TIM performance test, the cooling efficiency of GNW‐based TIMs is ≈ 1.5 times higher than that of state‐of‐the‐art commercial TIMs. The TIMs achieve the desired balance between high through‐plane thermal conductivity and small bond line thickness, providing superior cooling performance for suppressing the degradation of luminous properties of high‐power light‐emitting diode chips.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小小发布了新的文献求助10
1秒前
1秒前
薯条精完成签到 ,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
悲伤小蝴蝶完成签到,获得积分10
2秒前
dd发布了新的文献求助10
3秒前
碳酸钠完成签到,获得积分10
4秒前
以州完成签到,获得积分10
4秒前
xiemeili发布了新的文献求助10
5秒前
陌上发布了新的文献求助10
5秒前
diong发布了新的文献求助10
5秒前
6秒前
uoiewo完成签到,获得积分10
6秒前
fafafamc完成签到 ,获得积分10
7秒前
顺利萃发布了新的文献求助10
7秒前
在南方看北方完成签到,获得积分10
7秒前
优秀丸子完成签到,获得积分10
9秒前
10秒前
爱壹帆完成签到,获得积分10
10秒前
11秒前
11秒前
HOU应助卓惜筠采纳,获得10
11秒前
YUNA完成签到 ,获得积分10
11秒前
12秒前
糯米团子完成签到,获得积分10
13秒前
CipherSage应助DYZ采纳,获得10
13秒前
丘比特应助su采纳,获得10
13秒前
慕青应助开朗的之卉采纳,获得10
13秒前
能力越小责任越小完成签到,获得积分10
14秒前
顺利萃完成签到,获得积分10
14秒前
15秒前
勤恳元枫发布了新的文献求助10
16秒前
悟空发布了新的文献求助10
16秒前
17秒前
爱笑的蜗牛完成签到,获得积分20
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952