Baseline predictors of different types of treatment success in rheumatoid arthritis

医学 类风湿性关节炎 基线(sea) 可预测性 疾病 公制(单位) 内科学 物理疗法 临床试验 多元统计 多元分析 统计 海洋学 地质学 经济 数学 运营管理
作者
Dafne Capelusnik,Daniel Aletaha
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:81 (2): 153-158 被引量:8
标识
DOI:10.1136/annrheumdis-2021-220853
摘要

To perform a comprehensive analysis on predictors of achieving disease activity outcomes by change, response and state measures.We used data from three rheumatoid arthritis (RA) trials (one for main analysis, two for validation) to analyse the effect of patient and disease characteristics, core set measure and composite indices on the achievement of different outcomes: response outcomes (% of patients achieving a relative response margin); state outcomes (remission or low disease activity, LDA) and change outcomes (numerical change on metric scales).We included patients from the ASPIRE trial (for analysis) and from the ATTRACT and GO-BEFORE trials (for validation). While lower disease activity components at baseline-except acute phase reactants-were associated with achievement of state outcomes (such as LDA by the Simplified Disease Activity Index, SDAI), higher baseline values were associated with change outcomes (such as SDAI absolute change). A multivariate analysis of the identified predictors of state outcomes identified best prediction by a combination of shorter disease duration, male gender and lower disease activity. For prediction of response, no consistently significant predictors were found, again, with exception of C reactive protein, for which higher levels at baseline were associated with better responses.Prediction of treatment success is limited in RA. Particularly in early RA, prediction of state targets can be achieved by lower baseline levels of diseases activity. Gender and disease duration may improve the predictability of state targets. In clinical trials, included populations and choice of outcomes can be coordinated to maximise efficiency from these studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里青寒完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
bbl关闭了bbl文献求助
4秒前
CodeCraft应助柚子采纳,获得10
5秒前
百年孤独完成签到,获得积分10
5秒前
Q11完成签到,获得积分10
5秒前
wjx发布了新的文献求助10
6秒前
Hang发布了新的文献求助10
7秒前
苹果书文完成签到 ,获得积分10
7秒前
8秒前
winwing发布了新的文献求助10
9秒前
林筱辰发布了新的文献求助10
10秒前
11秒前
11秒前
王q完成签到,获得积分10
12秒前
12秒前
Jasper应助笨笨歌曲采纳,获得10
14秒前
852应助沐言采纳,获得10
14秒前
CipherSage应助满意的夜柳采纳,获得10
15秒前
15秒前
16秒前
Sky发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助诚心安露采纳,获得10
17秒前
18秒前
wjx发布了新的文献求助10
19秒前
20秒前
20秒前
丘比特应助Jacob采纳,获得10
20秒前
21秒前
22秒前
23秒前
24秒前
25秒前
YuGe发布了新的文献求助10
25秒前
奋斗刚发布了新的文献求助10
25秒前
oooo发布了新的文献求助10
26秒前
饼饼发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919