Autonomous State Inference for Data-Driven Optimization of Neural Modulation

计算机科学 人工神经网络 人工智能 推论 数据驱动 机器学习 算法
作者
Eric R. Cole,Mark Connolly,Sang-Eon Park,Dayton P. Grogan,William Buxton,Thomas E. Eggers,Nealen G. Laxpati,Robert E. Gross
出处
期刊:International IEEE/EMBS Conference on Neural Engineering 卷期号:: 950-953
标识
DOI:10.1109/ner49283.2021.9441385
摘要

Neural modulation is a fundamental tool for treating neurological diseases and understanding their mechanisms. One of the challenges in neural modulation includes selecting stimulation parameters, as parameter spaces are very large and their induced effects can exhibit complex behavior. Moreover, the effect of stimulation may depend on the underlying neural state, which can be difficult or impossible to quantify a priori. In this study, we first use an unsupervised learning approach to demonstrate that the effect of medial septum optogenetic stimulation on hippocampal activity differs between awake and anesthetized behavioral states. We then use these data to construct a simulation model of a neural modulation experiment and demonstrate a novel Bayesian optimization method that automatically learns the subject-specific relationship between neural state and its effect on modulation. This approach outperformed standard Bayesian optimization and identified ground-truth optimal parameters of the simulation model, suggesting that this method can efficiently explore complex state-dependent relationships of parameter spaces to improve neural modulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好雪枫完成签到,获得积分10
刚刚
jrzsy完成签到,获得积分10
1秒前
千叶儿发布了新的文献求助10
2秒前
2秒前
2秒前
叨叨发布了新的文献求助20
2秒前
3秒前
3秒前
今后应助sssssss采纳,获得10
4秒前
4秒前
姚龙完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
pluto应助稳重的秋天采纳,获得10
5秒前
6秒前
Yiran发布了新的文献求助10
7秒前
biequnyi完成签到,获得积分10
7秒前
李健的粉丝团团长应助Lmey采纳,获得10
8秒前
wayne完成签到 ,获得积分10
8秒前
木香发布了新的文献求助10
8秒前
一一发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
yyy0820完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
可可完成签到,获得积分10
13秒前
sys549应助yanni采纳,获得50
13秒前
清秀的小狗完成签到,获得积分10
14秒前
11111完成签到,获得积分20
14秒前
八万发布了新的文献求助10
14秒前
快乐的云关注了科研通微信公众号
14秒前
FashionBoy应助月月采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207