清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Autonomous State Inference for Data-Driven Optimization of Neural Modulation

计算机科学 人工神经网络 人工智能 推论 数据驱动 机器学习 算法
作者
Eric R. Cole,Mark Connolly,Sang-Eon Park,Dayton P. Grogan,William Buxton,Thomas E. Eggers,Nealen G. Laxpati,Robert E. Gross
出处
期刊:International IEEE/EMBS Conference on Neural Engineering 卷期号:: 950-953
标识
DOI:10.1109/ner49283.2021.9441385
摘要

Neural modulation is a fundamental tool for treating neurological diseases and understanding their mechanisms. One of the challenges in neural modulation includes selecting stimulation parameters, as parameter spaces are very large and their induced effects can exhibit complex behavior. Moreover, the effect of stimulation may depend on the underlying neural state, which can be difficult or impossible to quantify a priori. In this study, we first use an unsupervised learning approach to demonstrate that the effect of medial septum optogenetic stimulation on hippocampal activity differs between awake and anesthetized behavioral states. We then use these data to construct a simulation model of a neural modulation experiment and demonstrate a novel Bayesian optimization method that automatically learns the subject-specific relationship between neural state and its effect on modulation. This approach outperformed standard Bayesian optimization and identified ground-truth optimal parameters of the simulation model, suggesting that this method can efficiently explore complex state-dependent relationships of parameter spaces to improve neural modulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助研友_拓跋戾采纳,获得10
4秒前
Thi发布了新的文献求助10
9秒前
无悔完成签到 ,获得积分0
15秒前
笔墨纸砚完成签到 ,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
Thi完成签到,获得积分10
25秒前
39秒前
45秒前
46秒前
52秒前
吃饱再睡完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷酷的紫南完成签到 ,获得积分10
1分钟前
1分钟前
xue完成签到 ,获得积分10
1分钟前
冰凌心恋完成签到,获得积分10
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
hanlixuan完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
wanci应助john2333采纳,获得10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
Jin完成签到,获得积分10
2分钟前
jin完成签到,获得积分10
2分钟前
3分钟前
aming发布了新的文献求助10
3分钟前
john2333关注了科研通微信公众号
3分钟前
3分钟前
melody完成签到 ,获得积分10
3分钟前
john2333发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
深情安青应助www采纳,获得10
4分钟前
Scheduling完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304