A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities

均方误差 遥感 计算机科学 深度学习 背景(考古学) 卫星 卫星图像 估计 过程(计算) 图像分辨率 任务(项目管理) 人工智能 地理 数学 统计 管理 考古 航空航天工程 工程类 经济 操作系统
作者
Yinxia Cao,Xin Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:264: 112590-112590 被引量:145
标识
DOI:10.1016/j.rse.2021.112590
摘要

Knowledge of building height is critical for understanding the urban development process. High-resolution optical satellite images can provide fine spatial details within urban areas, while they have not been applied to building height estimation over multiple cities and the feasibility of mapping building height at a fine scale (< 5 m) remains understudied. Multi-view satellite images can describe vertical information of buildings, due to the inconsistent response of buildings (e.g., spectral and structural variations) to different viewing angles, but they have not been employed to deep learning-based building height estimation. In this context, we introduce high-resolution ZY-3 multi-view images to estimate building height at a spatial resolution of 2.5 m. We propose a multi-spectral, multi-view, and multi-task deep network (called M3Net) for building height estimation, where ZY-3 multi-spectral and multi-view images are fused in a multi-task learning framework. A random forest (RF) method using multi-source features is also carried out for comparison. We select 42 Chinese cities with diverse building types to test the proposed method. Results show that the M3Net obtains a lower root mean square error (RMSE) than the RF, and the inclusion of ZY-3 multi-view images can significantly lower the uncertainty of building height prediction. Comparison with two existing state-of-the-art studies further confirms the superiority of our method, especially the efficacy of the M3Net in alleviating the saturation effect of high-rise building height estimation. Compared to the vanilla single/multi-task models, the M3Net also achieves a lower RMSE. Moreover, the spatial-temporal transferability test indicates the robustness of the M3Net to imaging conditions and building styles. The test of our method on a relatively large area (covering about 14,120 km2) further validates the scalability of our method from the perspectives of both efficacy and quality. The source code will be made available at https://github.com/lauraset/BuildingHeightModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力敏完成签到,获得积分10
刚刚
旺仔发布了新的文献求助10
1秒前
慕青应助DDd采纳,获得10
1秒前
浮浮世世发布了新的文献求助10
2秒前
2秒前
2秒前
糖糖发布了新的文献求助10
3秒前
pengzzZZ完成签到,获得积分10
5秒前
今后应助sylnd126采纳,获得80
6秒前
6秒前
iNk发布了新的文献求助10
6秒前
爆米花应助葳蕤采纳,获得10
6秒前
七慕凉应助zzz采纳,获得10
8秒前
9秒前
9秒前
田様应助cr采纳,获得10
9秒前
10秒前
风华正茂完成签到,获得积分10
11秒前
呆呆完成签到,获得积分10
11秒前
十一发布了新的文献求助10
11秒前
一颗桃子发布了新的文献求助10
13秒前
13秒前
Gaara0504发布了新的文献求助30
14秒前
迅速的丑完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
Leon完成签到,获得积分10
19秒前
CAOHOU应助新星采纳,获得10
19秒前
19秒前
20秒前
21秒前
Lau完成签到,获得积分10
21秒前
星辰大海应助小碗熊采纳,获得10
22秒前
sunrise发布了新的文献求助10
22秒前
皮老师完成签到,获得积分10
22秒前
aldehyde应助苏我入鹿采纳,获得400
22秒前
111发布了新的文献求助10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232