A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities

均方误差 遥感 计算机科学 深度学习 背景(考古学) 卫星 卫星图像 估计 过程(计算) 图像分辨率 任务(项目管理) 人工智能 地理 数学 统计 航空航天工程 经济 考古 管理 工程类 操作系统
作者
Yinxia Cao,Xin Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:264: 112590-112590 被引量:145
标识
DOI:10.1016/j.rse.2021.112590
摘要

Knowledge of building height is critical for understanding the urban development process. High-resolution optical satellite images can provide fine spatial details within urban areas, while they have not been applied to building height estimation over multiple cities and the feasibility of mapping building height at a fine scale (< 5 m) remains understudied. Multi-view satellite images can describe vertical information of buildings, due to the inconsistent response of buildings (e.g., spectral and structural variations) to different viewing angles, but they have not been employed to deep learning-based building height estimation. In this context, we introduce high-resolution ZY-3 multi-view images to estimate building height at a spatial resolution of 2.5 m. We propose a multi-spectral, multi-view, and multi-task deep network (called M3Net) for building height estimation, where ZY-3 multi-spectral and multi-view images are fused in a multi-task learning framework. A random forest (RF) method using multi-source features is also carried out for comparison. We select 42 Chinese cities with diverse building types to test the proposed method. Results show that the M3Net obtains a lower root mean square error (RMSE) than the RF, and the inclusion of ZY-3 multi-view images can significantly lower the uncertainty of building height prediction. Comparison with two existing state-of-the-art studies further confirms the superiority of our method, especially the efficacy of the M3Net in alleviating the saturation effect of high-rise building height estimation. Compared to the vanilla single/multi-task models, the M3Net also achieves a lower RMSE. Moreover, the spatial-temporal transferability test indicates the robustness of the M3Net to imaging conditions and building styles. The test of our method on a relatively large area (covering about 14,120 km2) further validates the scalability of our method from the perspectives of both efficacy and quality. The source code will be made available at https://github.com/lauraset/BuildingHeightModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhm完成签到,获得积分10
1秒前
莫封叶完成签到,获得积分10
1秒前
王山完成签到,获得积分10
1秒前
2秒前
畅快芝麻完成签到,获得积分10
2秒前
Lucas应助徐徐采纳,获得10
2秒前
2秒前
刻苦的丹妗完成签到,获得积分10
3秒前
文静盈完成签到,获得积分20
3秒前
柠檬不吃酸完成签到 ,获得积分10
3秒前
甜甜灵槐完成签到 ,获得积分10
3秒前
4秒前
失眠的向日葵完成签到 ,获得积分10
4秒前
4秒前
YJY完成签到,获得积分10
5秒前
5秒前
5秒前
拉长的秋白完成签到 ,获得积分10
5秒前
贪玩亦云完成签到,获得积分10
5秒前
1a完成签到 ,获得积分10
6秒前
火山驾到发布了新的文献求助30
6秒前
7秒前
乐观海燕完成签到 ,获得积分10
7秒前
fiona完成签到,获得积分0
7秒前
blueskyzhi完成签到,获得积分10
7秒前
hr完成签到 ,获得积分10
7秒前
haitianluna完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
无尘完成签到 ,获得积分0
8秒前
科研通AI5应助邵邵采纳,获得10
8秒前
下文献完成签到,获得积分10
8秒前
CYJ完成签到,获得积分10
9秒前
TMF发布了新的文献求助50
9秒前
SCO完成签到,获得积分10
10秒前
精明手机完成签到,获得积分10
10秒前
某某某完成签到,获得积分10
10秒前
标致的方盒完成签到,获得积分10
10秒前
10秒前
芋你呀完成签到,获得积分10
10秒前
miao完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465