A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities

均方误差 遥感 计算机科学 深度学习 背景(考古学) 卫星 卫星图像 估计 过程(计算) 图像分辨率 任务(项目管理) 人工智能 地理 数学 统计 管理 考古 航空航天工程 工程类 经济 操作系统
作者
Yinxia Cao,Xin Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:264: 112590-112590 被引量:130
标识
DOI:10.1016/j.rse.2021.112590
摘要

Knowledge of building height is critical for understanding the urban development process. High-resolution optical satellite images can provide fine spatial details within urban areas, while they have not been applied to building height estimation over multiple cities and the feasibility of mapping building height at a fine scale (< 5 m) remains understudied. Multi-view satellite images can describe vertical information of buildings, due to the inconsistent response of buildings (e.g., spectral and structural variations) to different viewing angles, but they have not been employed to deep learning-based building height estimation. In this context, we introduce high-resolution ZY-3 multi-view images to estimate building height at a spatial resolution of 2.5 m. We propose a multi-spectral, multi-view, and multi-task deep network (called M3Net) for building height estimation, where ZY-3 multi-spectral and multi-view images are fused in a multi-task learning framework. A random forest (RF) method using multi-source features is also carried out for comparison. We select 42 Chinese cities with diverse building types to test the proposed method. Results show that the M3Net obtains a lower root mean square error (RMSE) than the RF, and the inclusion of ZY-3 multi-view images can significantly lower the uncertainty of building height prediction. Comparison with two existing state-of-the-art studies further confirms the superiority of our method, especially the efficacy of the M3Net in alleviating the saturation effect of high-rise building height estimation. Compared to the vanilla single/multi-task models, the M3Net also achieves a lower RMSE. Moreover, the spatial-temporal transferability test indicates the robustness of the M3Net to imaging conditions and building styles. The test of our method on a relatively large area (covering about 14,120 km2) further validates the scalability of our method from the perspectives of both efficacy and quality. The source code will be made available at https://github.com/lauraset/BuildingHeightModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文鞅发布了新的文献求助10
2秒前
阿飘完成签到,获得积分0
2秒前
欢喜妙旋发布了新的文献求助10
2秒前
小耿木木发布了新的文献求助10
2秒前
hl发布了新的文献求助10
3秒前
chenhd完成签到,获得积分10
3秒前
孤独谷蕊完成签到,获得积分10
3秒前
mao发布了新的文献求助10
4秒前
啊南发布了新的文献求助10
5秒前
5秒前
大个应助淡淡十三采纳,获得10
6秒前
Akim应助Aurorrra采纳,获得30
8秒前
黄紫红完成签到 ,获得积分10
8秒前
秀丽烨霖应助坚强的霆采纳,获得10
8秒前
科目三应助大饼卷肉采纳,获得10
9秒前
研友_VZG7GZ应助大饼卷肉采纳,获得10
9秒前
田様应助大饼卷肉采纳,获得10
9秒前
所所应助大饼卷肉采纳,获得10
9秒前
李健应助大饼卷肉采纳,获得10
9秒前
英俊的铭应助大饼卷肉采纳,获得10
9秒前
hl完成签到,获得积分10
9秒前
汉堡包应助大饼卷肉采纳,获得10
9秒前
脑洞疼应助大饼卷肉采纳,获得10
9秒前
9秒前
万能图书馆应助大饼卷肉采纳,获得10
9秒前
大力的祥发布了新的文献求助10
10秒前
小余同学完成签到,获得积分10
12秒前
JamesPei应助啊南采纳,获得10
13秒前
cctv18应助科研小白加加油采纳,获得20
13秒前
火星上的皮卡丘完成签到 ,获得积分10
13秒前
14秒前
喜悦静枫完成签到,获得积分10
14秒前
15秒前
jt完成签到,获得积分10
16秒前
18秒前
万能图书馆应助xuqiansd采纳,获得10
18秒前
Chen发布了新的文献求助10
19秒前
sun发布了新的文献求助10
20秒前
mao完成签到,获得积分10
21秒前
轻松的纸鹤完成签到,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245593
求助须知:如何正确求助?哪些是违规求助? 2889244
关于积分的说明 8257665
捐赠科研通 2557607
什么是DOI,文献DOI怎么找? 1386314
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626629