已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities

均方误差 遥感 计算机科学 深度学习 背景(考古学) 卫星 卫星图像 估计 过程(计算) 图像分辨率 任务(项目管理) 人工智能 地理 数学 统计 航空航天工程 经济 考古 管理 工程类 操作系统
作者
Yinxia Cao,Xin Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:264: 112590-112590 被引量:145
标识
DOI:10.1016/j.rse.2021.112590
摘要

Knowledge of building height is critical for understanding the urban development process. High-resolution optical satellite images can provide fine spatial details within urban areas, while they have not been applied to building height estimation over multiple cities and the feasibility of mapping building height at a fine scale (< 5 m) remains understudied. Multi-view satellite images can describe vertical information of buildings, due to the inconsistent response of buildings (e.g., spectral and structural variations) to different viewing angles, but they have not been employed to deep learning-based building height estimation. In this context, we introduce high-resolution ZY-3 multi-view images to estimate building height at a spatial resolution of 2.5 m. We propose a multi-spectral, multi-view, and multi-task deep network (called M3Net) for building height estimation, where ZY-3 multi-spectral and multi-view images are fused in a multi-task learning framework. A random forest (RF) method using multi-source features is also carried out for comparison. We select 42 Chinese cities with diverse building types to test the proposed method. Results show that the M3Net obtains a lower root mean square error (RMSE) than the RF, and the inclusion of ZY-3 multi-view images can significantly lower the uncertainty of building height prediction. Comparison with two existing state-of-the-art studies further confirms the superiority of our method, especially the efficacy of the M3Net in alleviating the saturation effect of high-rise building height estimation. Compared to the vanilla single/multi-task models, the M3Net also achieves a lower RMSE. Moreover, the spatial-temporal transferability test indicates the robustness of the M3Net to imaging conditions and building styles. The test of our method on a relatively large area (covering about 14,120 km2) further validates the scalability of our method from the perspectives of both efficacy and quality. The source code will be made available at https://github.com/lauraset/BuildingHeightModel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的迎梦完成签到 ,获得积分10
1秒前
Jessica完成签到,获得积分20
2秒前
2秒前
3秒前
ZhaohuaXie应助Charley采纳,获得10
3秒前
4秒前
5秒前
5秒前
无名的人发布了新的文献求助30
5秒前
6秒前
稳重盼易发布了新的文献求助10
7秒前
天天快乐应助Ahan采纳,获得10
9秒前
Xyyy发布了新的文献求助10
10秒前
mulidexin2021发布了新的文献求助20
10秒前
奋斗含巧发布了新的文献求助10
11秒前
12秒前
无名的人完成签到,获得积分20
12秒前
13秒前
大龙完成签到 ,获得积分10
14秒前
李爱国应助22222采纳,获得10
15秒前
零度发布了新的文献求助20
15秒前
迷你的夜天完成签到 ,获得积分10
17秒前
炙热的雨双完成签到 ,获得积分10
17秒前
17秒前
sagasofmaya完成签到,获得积分10
18秒前
优雅夕阳完成签到 ,获得积分10
18秒前
18秒前
Xyyy完成签到,获得积分10
19秒前
wsb76完成签到 ,获得积分10
21秒前
不抛弃不放弃完成签到,获得积分10
21秒前
Jonathan完成签到,获得积分10
21秒前
清爽的柚子完成签到 ,获得积分10
22秒前
孤独如曼完成签到 ,获得积分10
23秒前
欢呼宛秋完成签到,获得积分10
23秒前
qcy72完成签到,获得积分10
24秒前
小林同学0219完成签到 ,获得积分10
25秒前
默笙完成签到 ,获得积分10
26秒前
JD完成签到 ,获得积分10
26秒前
科研通AI5应助阿甲采纳,获得10
27秒前
灰色的乌完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925614
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031125
捐赠科研通 3967370
什么是DOI,文献DOI怎么找? 2174618
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101551