An enhanced Predictive heterogeneous ensemble model for breast cancer prediction

随机森林 支持向量机 人工智能 计算机科学 朴素贝叶斯分类器 机器学习 集成学习 乳腺癌 逻辑回归 决策树 阿达布思 模式识别(心理学) 癌症 医学 内科学
作者
S. Nanglia,Muneer Ahmad,Fawad Khan,N. Z. Jhanjhi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103279-103279 被引量:127
标识
DOI:10.1016/j.bspc.2021.103279
摘要

Breast Cancer is one of the most prevalent tumors after lung cancer and is common in both women and men. This disease is mostly asymptomatic in the early stages thus detection is difficult, and it becomes complicated and expensive to be treated in later stages resulting in increased fatality rates. There are comparatively very few pieces of literature that investigated breast cancer employing an ensemble learning for cancer prediction as compared to single classifier approaches. This paper presents a heterogeneous ensemble machine learning approach, to detect breast cancer in the early stages. The proposed approach follows the CRISP-DM process and uses Stacking for building the ensemble model using three different algorithms – K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT). The performance of this meta classifier is compared with the individual performances of its base classifiers (KNN, SVM, DT) and other single classifiers – Logistic Regression (LR), Artificial Neural Network (ANN), Naïve Bayes (NB), Stochastic Gradient Descent (SGD) and a homogenous ensemble model of Random Forest (RF). The top 5 features – Glucose, Resistin, HOMA, Insulin, and BMI are derived by using Chi-Square. Evaluation of the model helps in estimating its consideration for early breast cancer prediction just by using the anthropometric data of humans. Performances of models are compared using metrics such as accuracy, AUC, ROC Curve, f1-score, precision, recall, log loss, and specificity using K-fold cross-validation of 2, 3, 5, 10, and 20 folds. The proposed ensemble model achieved the greatest accuracy of 78 % with the lowest log-loss of 0.56, at K = 20, thus rejecting the Null hypothesis. The derived p-value is 0.014, from the one-tailed t-test, which provides lower significance at ∝ = 0.05.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
He完成签到,获得积分10
1秒前
roosterpan完成签到,获得积分10
1秒前
HOXXXiii完成签到,获得积分10
2秒前
2秒前
2秒前
orixero应助泽秀儿采纳,获得10
2秒前
3秒前
mark2021发布了新的文献求助60
3秒前
slmj完成签到,获得积分10
3秒前
nnnaaaa完成签到,获得积分10
4秒前
lixia完成签到 ,获得积分10
4秒前
英姑应助roosterpan采纳,获得10
5秒前
6秒前
壮观觅柔发布了新的文献求助30
6秒前
活泼的如容完成签到,获得积分20
7秒前
哈哈哈66发布了新的文献求助10
7秒前
yoo发布了新的文献求助10
8秒前
8秒前
9秒前
上官若男应助冷傲迎梦采纳,获得10
9秒前
9秒前
10秒前
Lorayacarat发布了新的文献求助10
11秒前
lsl应助TXZ06采纳,获得30
11秒前
11秒前
小马甲应助wuxunxun2015采纳,获得10
11秒前
高大以南完成签到,获得积分10
13秒前
富贵临完成签到,获得积分10
13秒前
Helium发布了新的文献求助10
13秒前
13秒前
诸怀曼发布了新的文献求助10
13秒前
许某希完成签到 ,获得积分10
14秒前
14秒前
14秒前
张澳发布了新的文献求助10
14秒前
殷勤的问玉完成签到 ,获得积分10
15秒前
科研NM发布了新的文献求助10
15秒前
8899发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559