An enhanced Predictive heterogeneous ensemble model for breast cancer prediction

随机森林 支持向量机 人工智能 计算机科学 朴素贝叶斯分类器 机器学习 集成学习 乳腺癌 逻辑回归 决策树 阿达布思 模式识别(心理学) 癌症 医学 内科学
作者
S. Nanglia,Muneer Ahmad,Fawad Khan,N. Z. Jhanjhi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103279-103279 被引量:127
标识
DOI:10.1016/j.bspc.2021.103279
摘要

Breast Cancer is one of the most prevalent tumors after lung cancer and is common in both women and men. This disease is mostly asymptomatic in the early stages thus detection is difficult, and it becomes complicated and expensive to be treated in later stages resulting in increased fatality rates. There are comparatively very few pieces of literature that investigated breast cancer employing an ensemble learning for cancer prediction as compared to single classifier approaches. This paper presents a heterogeneous ensemble machine learning approach, to detect breast cancer in the early stages. The proposed approach follows the CRISP-DM process and uses Stacking for building the ensemble model using three different algorithms – K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT). The performance of this meta classifier is compared with the individual performances of its base classifiers (KNN, SVM, DT) and other single classifiers – Logistic Regression (LR), Artificial Neural Network (ANN), Naïve Bayes (NB), Stochastic Gradient Descent (SGD) and a homogenous ensemble model of Random Forest (RF). The top 5 features – Glucose, Resistin, HOMA, Insulin, and BMI are derived by using Chi-Square. Evaluation of the model helps in estimating its consideration for early breast cancer prediction just by using the anthropometric data of humans. Performances of models are compared using metrics such as accuracy, AUC, ROC Curve, f1-score, precision, recall, log loss, and specificity using K-fold cross-validation of 2, 3, 5, 10, and 20 folds. The proposed ensemble model achieved the greatest accuracy of 78 % with the lowest log-loss of 0.56, at K = 20, thus rejecting the Null hypothesis. The derived p-value is 0.014, from the one-tailed t-test, which provides lower significance at ∝ = 0.05.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ayeben发布了新的文献求助10
2秒前
mmm4完成签到,获得积分10
2秒前
小杭776发布了新的文献求助10
2秒前
今后应助知性的忆雪采纳,获得10
2秒前
cc完成签到,获得积分10
4秒前
AARON完成签到,获得积分10
4秒前
1130311发布了新的文献求助10
4秒前
6秒前
黎泱完成签到,获得积分10
8秒前
路过完成签到,获得积分10
9秒前
ayeben完成签到,获得积分10
9秒前
10秒前
锐志无锋完成签到,获得积分10
12秒前
13秒前
Apple发布了新的文献求助10
13秒前
领导范儿应助chenfeng233采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
一二发布了新的文献求助10
14秒前
15秒前
15秒前
hgzz发布了新的文献求助10
15秒前
17秒前
孙皓然发布了新的文献求助10
18秒前
admirat完成签到,获得积分10
18秒前
19秒前
19秒前
Yuan完成签到,获得积分10
20秒前
星辰大海应助龙华之士采纳,获得10
21秒前
自帮助发布了新的文献求助10
21秒前
牧百川完成签到,获得积分20
22秒前
22秒前
舒芙蕾发布了新的文献求助10
22秒前
benlaron发布了新的文献求助10
22秒前
守护完成签到,获得积分10
23秒前
小杭776发布了新的文献求助10
23秒前
23秒前
111完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932