清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Federated-Learning-Based Anomaly Detection for IoT Security Attacks

计算机科学 异常检测 物联网 入侵检测系统 Web服务器 服务器 互联网 边缘设备 计算机安全 人工智能 计算机网络 机器学习 万维网 云计算 操作系统
作者
Viraaji Mothukuri,Prachi Khare,Reza M. Parizi,Seyedamin Pouriyeh,Ali Dehghantanha,Gautam Srivastava
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2545-2554 被引量:408
标识
DOI:10.1109/jiot.2021.3077803
摘要

The Internet of Things (IoT) is made up of billions of physical devices connected to the Internet via networks that perform tasks independently with less human intervention. Such brilliant automation of mundane tasks requires a considerable amount of user data in digital format, which, in turn, makes IoT networks an open source of personally identifiable information data for malicious attackers to steal, manipulate, and perform nefarious activities. A huge interest has been developed over the past years in applying machine learning (ML)-assisted approaches in the IoT security space. However, the assumption in many current works is that big training data are widely available and transferable to the main server because data are born at the edge and are generated continuously by IoT devices. This is to say that classic ML works on the legacy set of entire data located on a central server, which makes it the least preferred option for domains with privacy concerns on user data. To address this issue, we propose the federated-learning (FL)-based anomaly detection approach to proactively recognize intrusion in IoT networks using decentralized on-device data. Our approach uses federated training rounds on gated recurrent units (GRUs) models and keeps the data intact on local IoT devices by sharing only the learned weights with the central server of FL. Also, the approach’s ensembler part aggregates the updates from multiple sources to optimize the global ML model’s accuracy. Our experimental results demonstrate that our approach outperforms the classic/centralized machine learning (non-FL) versions in securing the privacy of user data and provides an optimal accuracy rate in attack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marceloclaro完成签到,获得积分10
14秒前
刘刘完成签到 ,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
zai完成签到 ,获得积分10
2分钟前
jasmine完成签到 ,获得积分10
3分钟前
4分钟前
范白容完成签到 ,获得积分10
4分钟前
苗条丹南完成签到 ,获得积分10
4分钟前
6分钟前
YiXianCoA完成签到 ,获得积分10
8分钟前
酷酷如音发布了新的文献求助10
8分钟前
tranphucthinh完成签到,获得积分10
9分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
11分钟前
科研通AI2S应助滕皓轩采纳,获得10
12分钟前
freemaisui应助滕皓轩采纳,获得10
12分钟前
科研通AI2S应助滕皓轩采纳,获得10
12分钟前
酷炫翠桃应助滕皓轩采纳,获得10
12分钟前
酷炫翠桃应助滕皓轩采纳,获得10
12分钟前
不配.应助滕皓轩采纳,获得10
12分钟前
不配.应助滕皓轩采纳,获得10
12分钟前
开放素完成签到 ,获得积分10
13分钟前
蜂蜜柚子完成签到 ,获得积分10
13分钟前
liwang9301完成签到,获得积分10
15分钟前
传奇3应助洛洛华曦采纳,获得10
16分钟前
丰富水云完成签到,获得积分10
16分钟前
丰富水云发布了新的文献求助10
16分钟前
psypsy应助SW采纳,获得10
16分钟前
ccc完成签到 ,获得积分10
16分钟前
m赤子心完成签到 ,获得积分10
17分钟前
icewuwu完成签到,获得积分10
17分钟前
belssingoo完成签到,获得积分10
17分钟前
迅速的蜡烛完成签到 ,获得积分10
17分钟前
18分钟前
cxk发布了新的文献求助10
18分钟前
石董宝宝完成签到,获得积分10
18分钟前
20分钟前
洛洛华曦发布了新的文献求助10
20分钟前
20分钟前
科目三应助nipanpan采纳,获得10
21分钟前
洛洛华曦完成签到,获得积分10
21分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229748
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198664
捐赠科研通 2544727
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647015
邀请新用户注册赠送积分活动 621836