Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你的左轮呢完成签到,获得积分10
1秒前
ltutui7完成签到,获得积分10
1秒前
薛子的科yan通完成签到,获得积分10
1秒前
2秒前
3秒前
CodeCraft应助Xinwen0322采纳,获得30
3秒前
4秒前
future完成签到 ,获得积分10
4秒前
英勇大门完成签到,获得积分10
5秒前
6秒前
嗯哼发布了新的文献求助10
7秒前
爱吃铁板牛肉的鱿鱼须完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
yyauthor完成签到,获得积分10
11秒前
鲤鱼砖头关注了科研通微信公众号
11秒前
又又发布了新的文献求助10
11秒前
xliiii发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
ShangNiNE完成签到 ,获得积分10
14秒前
YXIAN完成签到,获得积分10
15秒前
西厢张生发布了新的文献求助10
15秒前
科研通AI6应助liang2508采纳,获得10
15秒前
痴痴的噜完成签到,获得积分10
16秒前
16秒前
StudyLiao完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
upupup发布了新的文献求助10
19秒前
20秒前
GangWu完成签到,获得积分20
21秒前
迟未瑾发布了新的文献求助10
21秒前
Xinwen0322发布了新的文献求助30
21秒前
可爱的函函应助江夏采纳,获得10
22秒前
22秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964