Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lccccc完成签到,获得积分10
2秒前
3秒前
Mei完成签到,获得积分20
3秒前
白河发布了新的文献求助10
4秒前
好嘞完成签到 ,获得积分10
6秒前
6秒前
LTT发布了新的文献求助10
6秒前
青橘短衫完成签到,获得积分10
6秒前
7秒前
芋你呀发布了新的文献求助10
10秒前
huangyu完成签到,获得积分10
10秒前
10秒前
鳗鱼不尤完成签到,获得积分10
11秒前
罗马没有马完成签到 ,获得积分10
12秒前
helen李发布了新的文献求助10
13秒前
爱咋咋地发布了新的文献求助10
13秒前
HXY完成签到 ,获得积分10
13秒前
紧张的谷槐完成签到,获得积分10
13秒前
华仔应助乐观幻儿采纳,获得10
14秒前
15秒前
都要多喝水完成签到,获得积分10
17秒前
阔达的老太完成签到 ,获得积分10
17秒前
蓝桉完成签到,获得积分10
17秒前
17秒前
kingdirt完成签到,获得积分10
18秒前
ING完成签到,获得积分10
20秒前
latata发布了新的文献求助10
21秒前
欣喜宛亦完成签到 ,获得积分10
21秒前
21秒前
yu完成签到,获得积分10
22秒前
paopao发布了新的文献求助10
23秒前
24秒前
QAQ77发布了新的文献求助10
24秒前
26秒前
南湖完成签到 ,获得积分10
26秒前
26秒前
杨lan完成签到 ,获得积分10
28秒前
28秒前
hhy完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329