Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 语言学 哲学 物理 大地测量学 天文 地理
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wwwwwei发布了新的文献求助10
刚刚
trayheep完成签到,获得积分10
刚刚
Harry完成签到,获得积分10
1秒前
自由的冰蓝完成签到,获得积分10
1秒前
华仔应助吴桐采纳,获得20
2秒前
3秒前
Harry发布了新的文献求助10
3秒前
4秒前
5秒前
三寸光阴发布了新的文献求助10
5秒前
境由心生完成签到,获得积分10
5秒前
狂野的山雁完成签到,获得积分10
5秒前
852应助关关采纳,获得30
7秒前
7秒前
9秒前
suibiao发布了新的文献求助10
9秒前
10秒前
星辰大海应助Kelly采纳,获得10
12秒前
12秒前
Dorren完成签到,获得积分10
13秒前
13秒前
小李飞刀发布了新的文献求助10
14秒前
14秒前
yusong发布了新的文献求助10
15秒前
欣慰的水壶完成签到,获得积分10
15秒前
15秒前
吴桐发布了新的文献求助20
16秒前
归海神刀完成签到,获得积分10
18秒前
18秒前
19秒前
星辰大海应助Yummy采纳,获得10
19秒前
19秒前
道元完成签到,获得积分10
19秒前
三寸光阴完成签到,获得积分10
20秒前
领导范儿应助代代代代采纳,获得10
21秒前
21秒前
21秒前
可爱的函函应助科研丁真采纳,获得10
21秒前
Nanami24发布了新的文献求助10
22秒前
万能图书馆应助马放南山采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492156
求助须知:如何正确求助?哪些是违规求助? 4590429
关于积分的说明 14430292
捐赠科研通 4522780
什么是DOI,文献DOI怎么找? 2478060
邀请新用户注册赠送积分活动 1463106
关于科研通互助平台的介绍 1435756