已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助上官采纳,获得10
刚刚
zzj发布了新的文献求助30
1秒前
1秒前
2秒前
平底锅攻击完成签到 ,获得积分10
2秒前
ffchen111完成签到 ,获得积分0
2秒前
3秒前
4秒前
NexusExplorer应助自觉棉花糖采纳,获得10
4秒前
tony完成签到,获得积分10
5秒前
布鲁鲁发布了新的文献求助10
5秒前
nicholas发布了新的文献求助10
6秒前
Thi发布了新的文献求助10
8秒前
8秒前
8秒前
GG发布了新的文献求助10
9秒前
小二郎应助留胡子的扬采纳,获得10
10秒前
BowieHuang应助留胡子的扬采纳,获得10
10秒前
600发布了新的文献求助10
12秒前
hazekurt发布了新的文献求助10
12秒前
BowieHuang应助21采纳,获得10
13秒前
14秒前
生动夏青完成签到,获得积分10
15秒前
16秒前
wanci应助显隐采纳,获得10
16秒前
oyfff完成签到 ,获得积分10
16秒前
小巧的洋葱完成签到 ,获得积分10
17秒前
000发布了新的文献求助10
18秒前
皮代谷完成签到,获得积分10
18秒前
情怀应助GG采纳,获得10
19秒前
19秒前
三四月应助刘杨采纳,获得10
20秒前
传奇3应助上官采纳,获得10
21秒前
BowieHuang应助21采纳,获得10
22秒前
22秒前
完美世界应助天棱采纳,获得10
23秒前
bkagyin应助于鱼采纳,获得10
23秒前
Echo完成签到 ,获得积分10
24秒前
安静翎发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590110
求助须知:如何正确求助?哪些是违规求助? 4674555
关于积分的说明 14794353
捐赠科研通 4630157
什么是DOI,文献DOI怎么找? 2532551
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468571