Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真实的芫发布了新的文献求助10
刚刚
2秒前
专注的惜萱完成签到,获得积分10
2秒前
lzw123456完成签到,获得积分10
2秒前
echo完成签到 ,获得积分10
2秒前
3秒前
科研通AI5应助hzh采纳,获得10
4秒前
ccm应助罗英采纳,获得10
4秒前
5秒前
浮游应助TT采纳,获得10
5秒前
Chaimengdi发布了新的文献求助10
6秒前
汉堡包应助江大橘采纳,获得10
7秒前
7秒前
bwx发布了新的文献求助200
7秒前
青青发布了新的文献求助30
8秒前
RogerCHEN发布了新的文献求助100
8秒前
乌龟君完成签到,获得积分10
8秒前
8秒前
9秒前
zbj完成签到 ,获得积分10
9秒前
青年才俊发布了新的文献求助10
9秒前
9秒前
Oil完成签到,获得积分10
9秒前
10秒前
一颗小纽扣完成签到,获得积分10
11秒前
斯文败类应助李李李采纳,获得10
11秒前
科研小白发布了新的文献求助10
11秒前
脑洞疼应助荔枝采纳,获得10
11秒前
芋泥芝士发布了新的文献求助10
12秒前
科研王完成签到 ,获得积分10
12秒前
斯文败类应助胡慧婷采纳,获得10
13秒前
13秒前
Chaimengdi完成签到,获得积分10
13秒前
刘璐发布了新的文献求助10
14秒前
kermitds发布了新的文献求助20
14秒前
hzh发布了新的文献求助10
16秒前
爆米花应助微笑笑萍采纳,获得30
16秒前
鲤鱼诗桃发布了新的文献求助10
16秒前
万能图书馆应助yytt采纳,获得10
17秒前
刘骁萱完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097035
求助须知:如何正确求助?哪些是违规求助? 4309550
关于积分的说明 13427646
捐赠科研通 4136934
什么是DOI,文献DOI怎么找? 2266413
邀请新用户注册赠送积分活动 1269483
关于科研通互助平台的介绍 1205787