Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:6
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿卷发布了新的文献求助10
刚刚
Kittymiaoo完成签到,获得积分10
1秒前
orixero应助光电采纳,获得10
1秒前
呼叫554发布了新的文献求助10
1秒前
晴天娃娃发布了新的文献求助10
1秒前
饭饭大王发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
ori关闭了ori文献求助
2秒前
2秒前
大方小凡完成签到,获得积分10
2秒前
xuuuuu完成签到,获得积分10
2秒前
灰白发布了新的文献求助10
2秒前
2秒前
马家辉发布了新的文献求助10
3秒前
在水一方应助chen采纳,获得10
3秒前
FashionBoy应助Menahemxie采纳,获得10
3秒前
Jared应助玩命的芝麻采纳,获得10
3秒前
文静季节完成签到,获得积分20
3秒前
3秒前
吉吉完成签到,获得积分10
4秒前
HEYUYU发布了新的文献求助10
4秒前
moonpie关注了科研通微信公众号
5秒前
5秒前
5秒前
专注的曼卉发布了新的文献求助100
5秒前
haimianbaobao发布了新的文献求助10
5秒前
6秒前
6秒前
123发布了新的文献求助10
7秒前
7秒前
科目三应助Khr1stINK采纳,获得10
7秒前
7秒前
7秒前
考博圣体完成签到,获得积分10
8秒前
gf完成签到,获得积分10
8秒前
Tsuki完成签到 ,获得积分10
8秒前
小马甲应助平淡的白云采纳,获得10
8秒前
冷月寒寒大魔王完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482