Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 语言学 哲学 物理 大地测量学 天文 地理
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
nenoaowu完成签到,获得积分10
4秒前
Sanche发布了新的文献求助10
4秒前
善学以致用应助junjie采纳,获得10
5秒前
缓慢的开山完成签到 ,获得积分10
5秒前
7秒前
秀丽黑裤完成签到,获得积分20
7秒前
能干砖家发布了新的文献求助10
7秒前
happyccch发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
RW乾完成签到,获得积分10
9秒前
善良青筠完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
MZ发布了新的文献求助10
12秒前
12秒前
秀丽黑裤发布了新的文献求助10
12秒前
RaynorHank发布了新的文献求助10
12秒前
13秒前
加贝火火完成签到 ,获得积分10
13秒前
乔杰完成签到,获得积分10
13秒前
ZZzz完成签到,获得积分10
15秒前
AGuang应助包容新蕾采纳,获得10
17秒前
phy发布了新的文献求助10
17秒前
tzb发布了新的文献求助10
18秒前
ztt完成签到,获得积分10
18秒前
RaynorHank完成签到,获得积分10
19秒前
21秒前
桃真心发布了新的文献求助100
21秒前
小蘑菇应助一只蠢兔子采纳,获得10
21秒前
21秒前
czwu完成签到,获得积分10
22秒前
22秒前
24秒前
Superman发布了新的文献求助10
24秒前
orixero应助英俊的觅海采纳,获得10
26秒前
充电宝应助十三采纳,获得10
26秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511