Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:6
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Khr1stINK发布了新的文献求助20
刚刚
lolly完成签到,获得积分10
1秒前
zhu发布了新的文献求助10
1秒前
李爱国应助kaiqiang采纳,获得10
1秒前
3秒前
pzh发布了新的文献求助10
3秒前
Yuan发布了新的文献求助10
3秒前
李永正发布了新的文献求助10
3秒前
长情青烟发布了新的文献求助10
4秒前
lolly发布了新的文献求助10
5秒前
orixero应助温酒叙人生采纳,获得10
5秒前
Baegal发布了新的文献求助10
5秒前
大力帽子应助jiangmiao采纳,获得10
5秒前
Owen应助不回首采纳,获得10
5秒前
白云发布了新的文献求助10
6秒前
6秒前
爱学习的椰子完成签到 ,获得积分10
7秒前
多云发布了新的文献求助30
7秒前
小二郎应助cheers采纳,获得10
7秒前
LGL完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
乌龟娟完成签到,获得积分10
9秒前
LML完成签到,获得积分10
9秒前
风中大楚发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助bzlish采纳,获得10
10秒前
scc完成签到,获得积分10
10秒前
11秒前
ZZZZZZZZ发布了新的文献求助10
11秒前
11秒前
欣欣完成签到,获得积分10
11秒前
11秒前
hunter完成签到,获得积分10
11秒前
HUI发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406