Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
莹莹啊发布了新的文献求助10
1秒前
研究僧发布了新的文献求助30
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助wangqing采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
KANY应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
冷静如柏完成签到,获得积分10
3秒前
小杭76应助科研通管家采纳,获得10
3秒前
幸运鹅应助科研通管家采纳,获得10
3秒前
走不开不快乐完成签到 ,获得积分10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
星辰大海应助dearzkj采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
英姑应助呆熊采纳,获得10
4秒前
加油加油发布了新的文献求助10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260201
求助须知:如何正确求助?哪些是违规求助? 4421658
关于积分的说明 13763924
捐赠科研通 4295852
什么是DOI,文献DOI怎么找? 2357059
邀请新用户注册赠送积分活动 1353410
关于科研通互助平台的介绍 1314622