Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:6
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心幻巧完成签到,获得积分10
刚刚
ww完成签到 ,获得积分10
1秒前
1秒前
JHL发布了新的文献求助10
1秒前
xr完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
orixero应助jaderuan采纳,获得10
5秒前
bkagyin应助学学学采纳,获得10
5秒前
cC应助童童采纳,获得10
5秒前
核桃发布了新的文献求助50
6秒前
7秒前
7秒前
科研通AI6应助靓丽的寒蕾采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
真真完成签到,获得积分20
10秒前
10秒前
张志超发布了新的文献求助10
11秒前
嘿嘿发布了新的文献求助10
11秒前
超帅悟空发布了新的文献求助10
11秒前
大机灵发布了新的文献求助10
11秒前
QI完成签到 ,获得积分10
12秒前
hao发布了新的文献求助10
12秒前
YuChen169完成签到 ,获得积分10
13秒前
真真发布了新的文献求助30
13秒前
13秒前
ghhu完成签到,获得积分10
14秒前
笨笨山芙完成签到 ,获得积分10
14秒前
15秒前
胡萝卜完成签到 ,获得积分10
15秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299