Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 语言学 哲学 物理 大地测量学 天文 地理
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:4
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
家伟发布了新的文献求助10
刚刚
诺诺完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
and999完成签到,获得积分10
1秒前
辛普森完成签到,获得积分20
2秒前
吃饱睡好发布了新的文献求助10
2秒前
无辜不言发布了新的文献求助10
3秒前
欢呼的盼旋完成签到,获得积分10
4秒前
无极微光应助CCS采纳,获得20
4秒前
香蕉觅云应助Yee采纳,获得10
4秒前
老迟到的土豆完成签到 ,获得积分10
5秒前
xuzhu0907完成签到,获得积分10
5秒前
共享精神应助陈龙平采纳,获得10
5秒前
lina发布了新的文献求助10
5秒前
Denny完成签到,获得积分10
6秒前
qiaoj2006完成签到,获得积分10
6秒前
家伟完成签到,获得积分10
6秒前
7秒前
8秒前
隐形曼青应助游大达采纳,获得10
8秒前
薇薇完成签到,获得积分10
9秒前
Cathy完成签到,获得积分10
9秒前
10秒前
milaiii发布了新的文献求助10
10秒前
发炎的扁桃体完成签到,获得积分10
11秒前
橙花完成签到 ,获得积分10
12秒前
keke发布了新的文献求助20
12秒前
胡图图发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
小桃耶完成签到,获得积分10
13秒前
surfing发布了新的文献求助10
13秒前
asdfghjkl完成签到,获得积分10
14秒前
大模型应助中心湖小海棠采纳,获得10
14秒前
15秒前
充电宝应助初余采纳,获得10
16秒前
Wendy发布了新的文献求助10
17秒前
17秒前
biubiu26发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458