已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi‐scale feature learning and temporal probing strategy for one‐stage temporal action localization

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 联营 特征(语言学) 卷积神经网络 运动(物理) 弹道 计算机视觉 深度学习 分割 特征学习 物理 哲学 天文 语言学 地理 大地测量学
作者
Leiyue Yao,Wei Yang,Wei Huang,Nan Jiang,Bingbing Zhou
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 4092-4112 被引量:6
标识
DOI:10.1002/int.22713
摘要

The aim of temporal action localization (TAL) is to determine the start and end frames of an action in a video. In recent years, TAL has attracted considerable attention because of its increasing applications in video understanding and retrieval. However, precisely estimating the duration of an action in the temporal dimension is still a challenging problem. In this paper, we propose an effective one-stage TAL method based on a self-defined motion data structure, called a dense joint motion matrix (DJMM), and a novel temporal detection strategy. Our method provides three main contributions. First, compared with mainstream motion images, DJMMs can preserve more pre-processed motion features and provides more precise detail representations. Furthermore, DJMMs perfectly solve the temporal information loss problem caused by motion trajectory overlaps within a certain time period. Second, a spatial pyramid pooling (SPP) layer, which is widely used in the object detection and tracking fields, is innovatively incorporated into the proposed method for multi-scale feature learning. Moreover, the SPP layer enables the backbone convolutional neural network (CNN) to receive DJMMs of any size in the temporal dimension. Third, a large-scale-first temporal detection strategy inspired by a well-developed Chinese text segmentation algorithm is proposed to address long-duration videos. Our method is evaluated on two benchmark data sets and one self-collected data set: Florence-3D, UTKinect-Action3D and HanYue-3D. The experimental results show that our method achieves competitive action recognition accuracy and high TAL precision, and its time efficiency and few-shot learning capabilities enable it to be utilized for real-time surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈登完成签到 ,获得积分10
1秒前
joe完成签到 ,获得积分10
1秒前
2秒前
友好谷蓝发布了新的文献求助10
2秒前
2秒前
可可钳发布了新的文献求助10
3秒前
lkwat完成签到 ,获得积分10
5秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Tanya47应助科研通管家采纳,获得10
6秒前
romance发布了新的文献求助10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
Tanya47应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Tanya47应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
风行域完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
爆米花应助友好谷蓝采纳,获得10
9秒前
西吴完成签到 ,获得积分10
9秒前
焰古完成签到 ,获得积分10
9秒前
无情的问枫完成签到 ,获得积分10
9秒前
涵涵涵hh完成签到 ,获得积分10
10秒前
lijunliang完成签到,获得积分10
11秒前
hh1106完成签到 ,获得积分20
11秒前
11秒前
minkeyantong完成签到 ,获得积分10
11秒前
11秒前
kkpzc完成签到 ,获得积分10
13秒前
粗犷的灵松完成签到,获得积分10
13秒前
无极微光应助开朗的lala采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759