计算机科学
过程(计算)
实施
功能(生物学)
帧(网络)
纳米技术
机器学习
电化学
人工智能
生化工程
材料科学
软件工程
化学
工程类
电极
电信
操作系统
物理化学
生物
进化生物学
作者
Aashutosh Mistry,Alejandro A. Franco,Samuel J. Cooper,Scott Alan Roberts,Venkatasubramanian Viswanathan
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-03-23
卷期号:: 1422-1431
被引量:138
标识
DOI:10.1021/acsenergylett.1c00194
摘要
Electrochemical systems function via interconversion of electric charge and chemical species and represent promising technologies for our cleaner, more sustainable future. However, their development time is fundamentally limited by our ability to identify new materials and understand their electrochemical response. To shorten this time frame, we need to switch from the trial-and-error approach of finding useful materials to a more selective process by leveraging model predictions. Machine learning (ML) offers data-driven predictions and can be helpful. Herein we ask if ML can revolutionize the development cycle from decades to a few years. We outline the necessary characteristics of such ML implementations. Instead of enumerating various ML algorithms, we discuss scientific questions about the electrochemical systems to which ML can contribute.
科研通智能强力驱动
Strongly Powered by AbleSci AI