已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis

生物 拟南芥 转录组 差速器(机械装置) 压力(语言学) 计算生物学 遗传学 基因 基因表达 物理 语言学 热力学 哲学 突变体
作者
Chuang Ma,Mingming Xin,Kenneth A. Feldmann,Xiangfeng Wang
出处
期刊:The Plant Cell [Oxford University Press]
卷期号:26 (2): 520-537 被引量:104
标识
DOI:10.1105/tpc.113.121913
摘要

Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained "informative" genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
JamesPei应助yoyo采纳,获得10
10秒前
传奇3应助栗子壳采纳,获得10
11秒前
丘比特应助西西采纳,获得10
12秒前
12秒前
小马甲应助按揭采纳,获得10
15秒前
17秒前
yoyo发布了新的文献求助10
18秒前
Owen应助科研疯狗采纳,获得30
21秒前
田様应助xuqiansd采纳,获得10
21秒前
anlgha完成签到,获得积分10
24秒前
hsyyk完成签到,获得积分10
25秒前
思源应助马博采纳,获得10
27秒前
希望天下0贩的0应助围城采纳,获得30
27秒前
29秒前
Orange应助科研通管家采纳,获得10
32秒前
Singularity应助科研通管家采纳,获得10
32秒前
32秒前
思源应助科研通管家采纳,获得10
32秒前
LV发布了新的文献求助10
32秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
wanci应助科研通管家采纳,获得10
32秒前
32秒前
JUN完成签到 ,获得积分10
33秒前
34秒前
34秒前
36秒前
小小铱完成签到,获得积分10
36秒前
xuqiansd发布了新的文献求助10
37秒前
sky发布了新的文献求助10
39秒前
39秒前
西西发布了新的文献求助10
45秒前
46秒前
46秒前
小蘑菇应助逃亡的小狗采纳,获得10
47秒前
慕青应助赵赵赵采纳,获得10
48秒前
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459923
求助须知:如何正确求助?哪些是违规求助? 3054242
关于积分的说明 9041027
捐赠科研通 2743485
什么是DOI,文献DOI怎么找? 1504932
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694764