Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases

电离辐射 活性氧 放射治疗 超氧化物歧化酶 DNA损伤 癌症研究 缺氧(环境) 癌症 肿瘤缺氧 癌细胞 化学 超氧化物 氧化应激 生物 氧气 生物化学 医学 辐照 DNA 内科学 有机化学 核物理学 物理
作者
Aaron K. Holley,Miao Lu,Daret K. St. Clair,William H. St. Clair
出处
期刊:Antioxidants & Redox Signaling [Mary Ann Liebert]
卷期号:20 (10): 1567-1589 被引量:128
标识
DOI:10.1089/ars.2012.5000
摘要

Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism.ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy.Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury.Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
打打应助yangyang采纳,获得10
刚刚
打发打发的发到付电费完成签到,获得积分10
刚刚
刚刚
1秒前
xinyi发布了新的文献求助10
1秒前
1秒前
伯赏若枫完成签到,获得积分10
1秒前
IceT发布了新的文献求助10
1秒前
汉堡包应助wangziyuan采纳,获得30
2秒前
婷婷发布了新的文献求助30
2秒前
2秒前
隐形曼青应助谦让的鞯采纳,获得10
2秒前
潮汐发布了新的文献求助10
3秒前
雷雷发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
阳光雨应助90采纳,获得10
4秒前
无花果应助summer采纳,获得10
4秒前
cMss发布了新的文献求助30
4秒前
5秒前
gg应助wang采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助快乐友易采纳,获得30
6秒前
盛清让完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
nnnnn发布了新的文献求助10
6秒前
xiaowang发布了新的文献求助10
7秒前
自由念露发布了新的文献求助10
7秒前
玛丽发布了新的文献求助10
8秒前
8秒前
香蕉花生完成签到 ,获得积分10
8秒前
田様应助小亿采纳,获得10
8秒前
从容尔蓝应助HBUCSS采纳,获得10
8秒前
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474842
求助须知:如何正确求助?哪些是违规求助? 3066929
关于积分的说明 9101738
捐赠科研通 2758293
什么是DOI,文献DOI怎么找? 1513527
邀请新用户注册赠送积分活动 699633
科研通“疑难数据库(出版商)”最低求助积分说明 699065