清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems

稳健性(进化) 渡线 计算机科学 算法 数学优化 人口 水准点(测量) 理论(学习稳定性) 差异进化 人工智能 数学 机器学习 社会学 人口学 基因 化学 生物化学 地理 大地测量学
作者
Ali Wagdy Mohamed,Anas A. Hadi,Anas Fattouh,Kamal Jambi
标识
DOI:10.1109/cec.2017.7969307
摘要

To improve the optimization performance of LSHADE algorithm, an alternative adaptation approach for the selection of control parameters is proposed. The proposed algorithm, named LSHADE-SPA, uses a new semi-parameter adaptation approach to effectively adapt the values of the scaling factor of the Differential evolution algorithm. The proposed approach consists of two different settings for two control parameters F and Cr. The benefit of this approach is to prove that the semi-adaptive algorithm is better than pure random algorithm or fully adaptive or self-adaptive algorithm. To enhance the performance of our algorithm, we also introduced a hybridization framework named LSHADE-SPACMA between LSHADE-SPA and a modified version of CMA-ES. The modified version of CMA-ES undergoes the crossover operation to improve the exploration capability of the proposed framework. In LSHADE-SPACMA both algorithms will work simultaneously on the same population, but more populations will be assigned gradually to the better performance algorithm. In order to verify and analyze the performance of both LSHADE-SPA and LSHADE-SPACMA, Numerical experiments on a set of 30 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions, including a comparison with LSHADE algorithm are executed. Experimental results indicate that in terms of robustness, stability, and quality of the solution obtained, of both LSHADE-SPA and LSHADE-SPACMA are better than LSHADE algorithm, especially as the dimension increases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
淡定自中发布了新的文献求助10
13秒前
CC完成签到 ,获得积分10
17秒前
23秒前
JamesPei应助快乐的小木虫采纳,获得10
31秒前
40秒前
我没周杰伦帅完成签到,获得积分20
44秒前
英俊的铭应助和谐的芷文采纳,获得10
47秒前
完美世界应助niko采纳,获得10
54秒前
爆米花应助niko采纳,获得30
54秒前
Orange应助niko采纳,获得10
54秒前
慕青应助niko采纳,获得10
54秒前
充电宝应助niko采纳,获得10
54秒前
大模型应助niko采纳,获得10
54秒前
领导范儿应助niko采纳,获得10
54秒前
香蕉觅云应助niko采纳,获得10
54秒前
Jasper应助niko采纳,获得10
54秒前
CipherSage应助niko采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
yipmyonphu应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534416
求助须知:如何正确求助?哪些是违规求助? 4622404
关于积分的说明 14582630
捐赠科研通 4562632
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022