Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces

计算机科学 黎曼几何 信息几何学 数学 几何学 标量曲率 曲率
作者
Paolo Zanini,Marco Congedo,Christian Jutten,Salem Said,Yannick Berthoumieu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:65 (5): 1107-1116 被引量:307
标识
DOI:10.1109/tbme.2017.2742541
摘要

This paper tackles the problem of transfer learning in the context of electroencephalogram (EEG)-based brain-computer interface (BCI) classification. In particular, the problems of cross-session and cross-subject classification are considered. These problems concern the ability to use data from previous sessions or from a database of past users to calibrate and initialize the classifier, allowing a calibration-less BCI mode of operation.Data are represented using spatial covariance matrices of the EEG signals, exploiting the recent successful techniques based on the Riemannian geometry of the manifold of symmetric positive definite (SPD) matrices. Cross-session and cross-subject classification can be difficult, due to the many changes intervening between sessions and between subjects, including physiological, environmental, as well as instrumental changes. Here, we propose to affine transform the covariance matrices of every session/subject in order to center them with respect to a reference covariance matrix, making data from different sessions/subjects comparable. Then, classification is performed both using a standard minimum distance to mean classifier, and through a probabilistic classifier recently developed in the literature, based on a density function (mixture of Riemannian Gaussian distributions) defined on the SPD manifold.The improvements in terms of classification performances achieved by introducing the affine transformation are documented with the analysis of two BCI datasets.Hence, we make, through the affine transformation proposed, data from different sessions and subject comparable, providing a significant improvement in the BCI transfer learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
九澄发布了新的文献求助10
刚刚
Ava应助巴啦啦小魔仙采纳,获得10
2秒前
朴实寻真完成签到,获得积分10
3秒前
闪闪灯泡发布了新的文献求助10
4秒前
无花果应助Sarah采纳,获得10
4秒前
5秒前
yvonne发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Jasper应助森ok采纳,获得10
6秒前
7秒前
mmyhn应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得30
9秒前
毛豆应助科研通管家采纳,获得10
9秒前
cocolu应助科研通管家采纳,获得30
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
flipped发布了新的文献求助10
9秒前
9秒前
缥缈夏彤发布了新的文献求助30
10秒前
siyarn发布了新的文献求助10
10秒前
Membranes发布了新的文献求助10
11秒前
大气如曼发布了新的文献求助10
13秒前
13秒前
顾矜应助zjspidany采纳,获得10
13秒前
Cara发布了新的文献求助10
14秒前
17秒前
tiandage完成签到,获得积分10
17秒前
干净的尔岚完成签到,获得积分20
18秒前
追寻澜完成签到 ,获得积分10
18秒前
20秒前
wangrswjx完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307038
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499088
捐赠科研通 2615019
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318