Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces

计算机科学 黎曼几何 信息几何学 数学 几何学 标量曲率 曲率
作者
Paolo Zanini,Marco Congedo,Christian Jutten,Salem Said,Yannick Berthoumieu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:65 (5): 1107-1116 被引量:307
标识
DOI:10.1109/tbme.2017.2742541
摘要

This paper tackles the problem of transfer learning in the context of electroencephalogram (EEG)-based brain-computer interface (BCI) classification. In particular, the problems of cross-session and cross-subject classification are considered. These problems concern the ability to use data from previous sessions or from a database of past users to calibrate and initialize the classifier, allowing a calibration-less BCI mode of operation.Data are represented using spatial covariance matrices of the EEG signals, exploiting the recent successful techniques based on the Riemannian geometry of the manifold of symmetric positive definite (SPD) matrices. Cross-session and cross-subject classification can be difficult, due to the many changes intervening between sessions and between subjects, including physiological, environmental, as well as instrumental changes. Here, we propose to affine transform the covariance matrices of every session/subject in order to center them with respect to a reference covariance matrix, making data from different sessions/subjects comparable. Then, classification is performed both using a standard minimum distance to mean classifier, and through a probabilistic classifier recently developed in the literature, based on a density function (mixture of Riemannian Gaussian distributions) defined on the SPD manifold.The improvements in terms of classification performances achieved by introducing the affine transformation are documented with the analysis of two BCI datasets.Hence, we make, through the affine transformation proposed, data from different sessions and subject comparable, providing a significant improvement in the BCI transfer learning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tls关注了科研通微信公众号
刚刚
刚刚
可爱大悦城完成签到,获得积分10
3秒前
双丁宝贝发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
6秒前
SOESAN发布了新的文献求助10
6秒前
7秒前
科目三应助源于期待采纳,获得10
9秒前
nano发布了新的文献求助20
10秒前
xiaohong发布了新的文献求助10
12秒前
领导范儿应助橘子味棒冰采纳,获得10
12秒前
13秒前
脑洞疼应助YoursSummer采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
兮兮完成签到,获得积分10
17秒前
xiaohong完成签到,获得积分10
17秒前
17秒前
siyuwang1234发布了新的文献求助10
17秒前
18秒前
Jessie发布了新的文献求助10
18秒前
19秒前
赘婿应助dmj采纳,获得10
20秒前
Jasper应助萌酱采纳,获得10
20秒前
单薄的果汁完成签到,获得积分10
21秒前
源于期待发布了新的文献求助10
22秒前
BANG发布了新的文献求助10
23秒前
金滢发布了新的文献求助10
23秒前
tls发布了新的文献求助10
28秒前
29秒前
30秒前
万能图书馆应助QiiiMengfan采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
33秒前
852应助科研通管家采纳,获得10
33秒前
源于期待完成签到,获得积分10
33秒前
33秒前
包远锋完成签到,获得积分10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182