Insight into a highly efficient electrolysis-ozone process for N,N-dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions

化学 电解 二甲基乙酰胺 臭氧 降级(电信) 催化作用 反应机理 氧化还原 分解 羟基自由基 电化学 高级氧化法 无机化学 光化学 化学工程 有机化学 激进的 电解质 溶剂 电极 物理化学 工程类 电信 计算机科学
作者
Zhaokun Xiong,Bo Lai,Ping Yang
出处
期刊:Water Research [Elsevier BV]
卷期号:140: 12-23 被引量:92
标识
DOI:10.1016/j.watres.2018.04.030
摘要

A highly efficient electrolysis catalyzed ozone (ECO) process was developed for N,N-dimethylacetamide (DMAC) degradation. The pseudo-first-order rate constants (kobs) of DMAC degradation by ECO process were 1.73–19.09 times greater than those by ozonation and electrolysis processes in a wide pH range of 3.0–10.0. Interestingly, we found O2•− could be generated from ozone decomposition by a radical chain mechanism instead of monovalent reduction of O2 in ECO system at the initial pH of 3.0. Subsequently, the H2O2 derived from O2•− could participate in Fenton-like and peroxone reactions with the released Fe2+ from iron anode and the aerated O3, respectively. Therefore, the extraordinary DMAC removal efficiency was mainly caused by the more generation of •OH through the multiple reactions of homogeneous catalytic ozonation, Fenton-like and peroxone in ECO system. Importantly, the roles of involved reactions in ECO system at various initial pH were quantitatively evaluated according to a series of trapping experiments. The results reveal that the solution pH could significantly affect the contributions of various reactions and convert the reaction mechanisms of multiple reactions in ECO system. Finally, the degradation intermediates were detected to propose a possible DMAC oxidation pathway in the ECO system. This work provides a deep insight into the quantitative analysis of the role of multiple oxidation reactions mechanism and the design of efficient electrochemical advanced oxidation technology for recalcitrant organic pollutant removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenol完成签到,获得积分20
刚刚
青羽落霞完成签到 ,获得积分10
1秒前
背后白开水完成签到,获得积分10
3秒前
3秒前
蓝色123完成签到,获得积分10
4秒前
ZY完成签到,获得积分10
4秒前
4秒前
蚂蚁发布了新的文献求助10
4秒前
SherlockJia发布了新的文献求助10
4秒前
小胡工科崽完成签到,获得积分10
4秒前
5秒前
5秒前
我说苏卡你说不列完成签到,获得积分10
5秒前
6秒前
拼搏的二哈完成签到,获得积分10
6秒前
纯洁的晟宝儿完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
王秋婷完成签到,获得积分10
8秒前
8秒前
星星有泪完成签到,获得积分10
8秒前
8秒前
Xxxxxxx发布了新的文献求助10
8秒前
小马甲应助SherlockJia采纳,获得10
10秒前
又夏发布了新的文献求助10
11秒前
12秒前
丁爽发布了新的文献求助10
12秒前
刮台风发布了新的文献求助10
13秒前
kkkl发布了新的文献求助10
13秒前
14秒前
小哥完成签到,获得积分10
15秒前
16秒前
完美世界应助文武贝采纳,获得10
16秒前
16秒前
Orange应助笑笑的妙松采纳,获得10
16秒前
17秒前
17秒前
生动以蓝完成签到 ,获得积分10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744647
求助须知:如何正确求助?哪些是违规求助? 3287652
关于积分的说明 10054403
捐赠科研通 3003835
什么是DOI,文献DOI怎么找? 1649214
邀请新用户注册赠送积分活动 785173
科研通“疑难数据库(出版商)”最低求助积分说明 750949