Multiobjective Multifactorial Optimization in Evolutionary Multitasking

人类多任务处理 计算机科学 多目标优化 进化算法 进化计算 帕累托原理 水准点(测量) 平行性(语法) 人口 趋同(经济学) 最优化问题 数学优化 适应(眼睛) 进化规划 领域(数学分析) 人工智能 机器学习 并行计算 数学 算法 认知心理学 经济增长 社会学 光学 心理学 大地测量学 物理 人口学 经济 地理 数学分析
作者
Abhishek Gupta,Yew-Soon Ong,Liang Feng,Kay Chen Tan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:47 (7): 1652-1665 被引量:354
标识
DOI:10.1109/tcyb.2016.2554622
摘要

In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助JAYhxt采纳,获得30
1秒前
1秒前
1秒前
zirconium完成签到,获得积分20
1秒前
1秒前
阔达如松发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
留胡子的千青完成签到,获得积分20
2秒前
4秒前
关23完成签到 ,获得积分10
4秒前
4秒前
大鱼发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
哦豁应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240