Modeling Multivariate Volatilities via Latent Common Factors

异方差 计量经济学 波动性(金融) 随机波动 多元统计 计算机科学 文件夹 经济 财务 机器学习
作者
Weiming Li,Jing Gao,Kunpeng Li,Qiwei Yao
出处
期刊:Journal of Business & Economic Statistics [Informa]
卷期号:34 (4): 564-573 被引量:12
标识
DOI:10.1080/07350015.2015.1092975
摘要

Volatility, represented in the form of conditional heteroscedasticity, plays an important role in controlling and forecasting risks in various financial operations including asset pricing, portfolio allocation, and hedging futures. However, modeling and forecasting multi-dimensional conditional heteroscedasticity are technically challenging. As the volatilities of many financial assets are often driven by a few common and latent factors, we propose in this article a dimension-reduction method to model a multivariate volatility process and to estimate a lower-dimensional space, to be called the volatility space, within which the dynamics of the multivariate volatility process is confined. The new method is simple to use, as technically it boils down to an eigenanalysis for a nonnegative definite matrix. Hence, it is applicable to the cases when the number of assets concerned is in the order of thousands (using an ordinary PC/laptop). On the other hand, the model has the capability to cater for complex conditional heteroscedasticity behavior for multi-dimensional processes. Some asymptotic properties for the new method are established. We further illustrate the new method using both simulated and real data examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医路有你完成签到,获得积分10
刚刚
1秒前
科研通AI5应助Sean采纳,获得10
1秒前
1秒前
超帅连虎完成签到,获得积分10
1秒前
皓月千里发布了新的文献求助10
1秒前
Grayball应助包容的剑采纳,获得10
1秒前
深情安青应助寒冷书竹采纳,获得10
2秒前
wbj0722完成签到,获得积分10
2秒前
JIAO完成签到,获得积分10
2秒前
2秒前
3秒前
852应助HopeStar采纳,获得10
3秒前
圆圆发布了新的文献求助30
4秒前
Orange应助Promise采纳,获得10
4秒前
一直发布了新的文献求助20
4秒前
4秒前
5秒前
乐乐应助JonyiCheng采纳,获得10
5秒前
无聊先知发布了新的文献求助10
5秒前
医路有你发布了新的文献求助10
6秒前
6秒前
6秒前
drizzling发布了新的文献求助10
7秒前
平淡南松完成签到,获得积分10
8秒前
研友_ED5GK完成签到,获得积分0
8秒前
舒适豌豆发布了新的文献求助10
8秒前
9秒前
生动的雨竹完成签到,获得积分10
9秒前
9秒前
啦啦啦完成签到,获得积分20
10秒前
silentJeremy完成签到,获得积分10
10秒前
10秒前
WNL发布了新的文献求助10
10秒前
11秒前
11秒前
玉yu完成签到 ,获得积分10
11秒前
嗯呢完成签到 ,获得积分10
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678