High-Mobility Transport Anisotropy in Few-Layer MoO3 and Its Origin

材料科学 图层(电子) 各向异性 工程物理 凝聚态物理 纳米技术 化学物理 光学 物理 工程类
作者
Wei‐Bing Zhang,Qian Qu,Lai Kang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:9 (2): 1702-1709 被引量:68
标识
DOI:10.1021/acsami.6b14255
摘要

The novel two-dimensional semiconductors with high carrier mobility and excellent stability are essential to the next-generation high-speed and low-power nanoelectronic devices. Because of the natural abundance, intrinsic gap, and chemical stability, metal oxides were also recently suggested as potential candidates for electronic materials. However, their carrier mobilities are typically on the order of tens of square centimeters per volt per second, much lower than that for commonly used silicon. By using first-principles calculations and deformation potential theory, we have predicted few-layer MoO3 as chemically stable wide-band-gap semiconductors with a considerably high acoustic-phonon-limited carrier mobility above 3000 cm2 V-1 s-1, which makes them promising candidates for both electron- and hole-transport applications. Moreover, we also find a large in-plane anisotropy of the carrier mobility with a ratio of about 20-30 in this unusual system. Further analysis indicates that, because of the unique charge density distribution of whole valence electrons and the states near the band edge, both the elastic modulus and deformation potential are strongly directionally dependent. Also, the predicted high-mobility transport anisotropy of few-layer MoO3 can be attributed to the synergistic effect of the anisotropy of the elastic modulus and deformation potential. Our results not only give an insightful understanding for the high carrier mobility observed in few-layer MoO3 systems but also reveal the importance of the carrier-transport direction to the device performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xkkk完成签到 ,获得积分10
刚刚
Akim应助小鹿5460采纳,获得10
刚刚
小土豆儿完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
niNe3YUE应助nekoking采纳,获得10
1秒前
菲a发布了新的文献求助10
3秒前
斯文败类应助littoral采纳,获得10
3秒前
4秒前
Mic应助天明采纳,获得30
4秒前
zhenzhen发布了新的文献求助10
4秒前
无花果应助小鹅采纳,获得10
5秒前
tyf完成签到,获得积分20
5秒前
fei发布了新的文献求助20
5秒前
5秒前
6秒前
6秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
hyc发布了新的文献求助10
7秒前
pluto应助寒冷的箴采纳,获得10
7秒前
huang发布了新的文献求助10
8秒前
8秒前
runzhi发布了新的文献求助10
9秒前
吴1发布了新的文献求助10
9秒前
彭于晏应助萌酱采纳,获得10
11秒前
11秒前
张兴华应助Tina采纳,获得10
11秒前
少女和猫发布了新的文献求助10
12秒前
jennie发布了新的文献求助10
12秒前
aa111完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
Hxh驳回了丘比特应助
13秒前
tyf关注了科研通微信公众号
13秒前
小勇仔发布了新的文献求助10
13秒前
Leslie完成签到,获得积分10
13秒前
hyc完成签到,获得积分20
14秒前
14秒前
14秒前
乖张应助Zard采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826129
求助须知:如何正确求助?哪些是违规求助? 6013880
关于积分的说明 15568551
捐赠科研通 4946464
什么是DOI,文献DOI怎么找? 2664827
邀请新用户注册赠送积分活动 1610600
关于科研通互助平台的介绍 1565595