已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning approach to predict depression and anxiety among patients with epilepsy in China: A cross-sectional study

焦虑 癫痫 萧条(经济学) 接收机工作特性 随机森林 心理学 机器学习 人工智能 精神科 临床心理学 计算机科学 宏观经济学 经济
作者
Zihan Wei,Xinpei Wang,Lei Ren,Chang Liu,Chao Liu,Mi Cao,Yan Feng,Yanjing Gan,Guoyan Li,Xufeng Liu,Yonghong Liu,Lei Yang,Yanchun Deng
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:336: 1-8 被引量:27
标识
DOI:10.1016/j.jad.2023.05.043
摘要

Anxiety and depression are the most prevalent comorbidities among epilepsy patients. The screen and diagnosis of anxiety and depression are quite important for the management of patients with epilepsy. In that case, the method for accurately predicting anxiety and depression needs to be further explored. A total of 480 patients with epilepsy (PWE) were enrolled in our study. Anxiety and Depressive symptoms were evaluated. Six machine learning models were used to predict anxiety and depression in patients with epilepsy. Receiver operating curve (ROC), decision curve analysis (DCA) and moDel Agnostic Language for Exploration and eXplanation (DALEX) package were used to evaluate the accuracy of machine learning models. For anxiety, the area under the ROC curve was not significantly different between models. DCA revealed that random forest and multilayer perceptron has the largest net benefit within different probability threshold. DALEX revealed that random forest and multilayer perceptron were models with best performance and stigma had the highest feature importance. For depression, the results were much the same. Methods created in this study may offer much help identifying PWE with high risk of anxiety and depression. The decision support system may be valuable for the everyday management of PWE. Further study is needed to test the outcome of applying this system to clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
huoxing完成签到 ,获得积分10
1秒前
西西完成签到,获得积分10
2秒前
快乐战神没烦恼完成签到 ,获得积分10
2秒前
困困包应助虚心的渊思采纳,获得10
2秒前
漂亮夏兰发布了新的文献求助10
3秒前
SciGPT应助包容成败采纳,获得10
3秒前
3秒前
科研通AI6应助虎虎生威采纳,获得30
4秒前
科研通AI6应助虎虎生威采纳,获得10
4秒前
赘婿应助虎虎生威采纳,获得10
4秒前
火焰迷踪发布了新的文献求助30
7秒前
8秒前
JamesPei应助付涵采纳,获得10
8秒前
9秒前
搜集达人应助onion采纳,获得10
9秒前
Maddy完成签到,获得积分10
10秒前
hhh完成签到,获得积分10
11秒前
远方发布了新的文献求助10
11秒前
润柏海完成签到 ,获得积分10
11秒前
11秒前
12秒前
马马完成签到 ,获得积分10
12秒前
酷炫的幻丝完成签到 ,获得积分10
13秒前
浮游应助han采纳,获得10
13秒前
13秒前
科研人完成签到,获得积分10
13秒前
沉住气发布了新的文献求助10
14秒前
可爱的函函应助时间尘埃采纳,获得10
15秒前
芷兰丁香发布了新的文献求助10
17秒前
Null发布了新的文献求助10
17秒前
万能图书馆应助油柑美式采纳,获得10
18秒前
吴巧发布了新的文献求助10
18秒前
19秒前
九bai完成签到 ,获得积分10
19秒前
上官若男应助漂亮夏兰采纳,获得10
19秒前
马马完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
Hello应助Zhao采纳,获得10
20秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502143
求助须知:如何正确求助?哪些是违规求助? 4598182
关于积分的说明 14462771
捐赠科研通 4531746
什么是DOI,文献DOI怎么找? 2483529
邀请新用户注册赠送积分活动 1466913
关于科研通互助平台的介绍 1439514