Using machine learning approach to predict depression and anxiety among patients with epilepsy in China: A cross-sectional study

焦虑 癫痫 萧条(经济学) 接收机工作特性 随机森林 心理学 机器学习 人工智能 精神科 临床心理学 计算机科学 宏观经济学 经济
作者
Zihan Wei,Xinpei Wang,Lei Ren,Chang Liu,Chao Liu,Mi Cao,Yan Feng,Y.S. Gan,Guoyan Li,Бо Лю,Yonghong Liu,Lei Yang,Yanchun Deng
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:336: 1-8 被引量:10
标识
DOI:10.1016/j.jad.2023.05.043
摘要

Anxiety and depression are the most prevalent comorbidities among epilepsy patients. The screen and diagnosis of anxiety and depression are quite important for the management of patients with epilepsy. In that case, the method for accurately predicting anxiety and depression needs to be further explored. A total of 480 patients with epilepsy (PWE) were enrolled in our study. Anxiety and Depressive symptoms were evaluated. Six machine learning models were used to predict anxiety and depression in patients with epilepsy. Receiver operating curve (ROC), decision curve analysis (DCA) and moDel Agnostic Language for Exploration and eXplanation (DALEX) package were used to evaluate the accuracy of machine learning models. For anxiety, the area under the ROC curve was not significantly different between models. DCA revealed that random forest and multilayer perceptron has the largest net benefit within different probability threshold. DALEX revealed that random forest and multilayer perceptron were models with best performance and stigma had the highest feature importance. For depression, the results were much the same. Methods created in this study may offer much help identifying PWE with high risk of anxiety and depression. The decision support system may be valuable for the everyday management of PWE. Further study is needed to test the outcome of applying this system to clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马紫蓝发布了新的文献求助10
刚刚
随遇而安完成签到,获得积分10
1秒前
xiaozhuzhu发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
5秒前
江峰发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
nehsiac发布了新的文献求助10
7秒前
mitty完成签到,获得积分10
7秒前
852发布了新的文献求助10
8秒前
8秒前
10秒前
宰宰小熊发布了新的文献求助10
10秒前
QXR发布了新的文献求助10
11秒前
mitty发布了新的文献求助10
12秒前
12秒前
暗中观察发布了新的文献求助10
13秒前
13秒前
江峰完成签到,获得积分10
13秒前
乐乐应助Tomice采纳,获得10
18秒前
莎莎薯条完成签到,获得积分10
19秒前
你才是冰雕完成签到,获得积分10
20秒前
TJC完成签到,获得积分20
21秒前
传奇3应助默默纲采纳,获得30
22秒前
Xik-发布了新的文献求助10
23秒前
池鱼关注了科研通微信公众号
23秒前
Akim应助土豆丝采纳,获得10
24秒前
青桔柠檬完成签到 ,获得积分10
24秒前
tccqq完成签到,获得积分10
25秒前
fairy完成签到,获得积分10
25秒前
谢育龙完成签到,获得积分20
25秒前
雪飞杨完成签到 ,获得积分10
26秒前
情怀应助xiaozhuzhu采纳,获得10
26秒前
itsserene应助Tomice采纳,获得50
27秒前
淡淡菠萝发布了新的文献求助10
27秒前
Linghu完成签到,获得积分10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194