3-D Building Instance Extraction From High-Resolution Remote Sensing Images and DSM With an End-to-End Deep Neural Network

端到端原则 计算机科学 遥感 人工神经网络 人工智能 萃取(化学) 高分辨率 图像分辨率 深度学习 特征提取 计算机视觉 模式识别(心理学) 地质学 化学 色谱法
作者
Dawen Yu,Shunping Ji,Shiqing Wei,Kourosh Khoshelham
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3383432
摘要

Three-dimensional (3D) building models play a vital role in numerous applications including urban planning and smart cities. Recent 3D building modeling methods either rely heavily on available manaually-collected footprint reference or hardly reach real automation on par with manual editing. To approach the automated extraction of instance-level 3D buildings at Level of Detail (LoD) 1, we introduce an innovative end-to-end 3D building instance segmentation model. This model predicts accurate contours and heights of individual buildings simultaneously using ortho-rectified high-resolution remote sensing images and Digital Surface Models (DSMs), getting rid of additional reference data and impirical parameter settings. Firstly, we propose an Anchor-Free Multi-head building extraction network (AFM) tailored for extracting 2D building contours. AFM incorporates a full-resolution, long-range correlation boosted global mask prediction branch along with anchor-free bounding box generation, as well as a newly developed online hard sample mining (OHSM) training procedure based on uncertainty analysis to emphasize error-prone positions in locating building contours. Subsequently, we incorporate a height prediction component to AFM in order to derive accurate building height information, thus creating the comprehensive 3D building extraction model referred to as AFM-3D. The two-stage AFM-3D operates by initially predicting 3D cube proposals, followed by generating refined 3D prismatic models (LoD1 models) for each proposal. Thorough experimentation across different datasets demonstrates the superior performance of AFM and AFM-3D. A significant enhancement of 6.4% quality score is observed on the urban 3D dataset in comparison to recent methods. In addition to the proposed novel methodology, we compare anchor-based and anchor-free bounding box generation mechanisms for remote sensing data, explore pixel-based and contour-based segmentation strategies, evaluate learning-based and empirical height estimation methods, and discuss the indispensability of DSM data in 3D building instance extraction. These analyses yield valuable insights that contribute to the progression of 3D building extraction research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的万声完成签到,获得积分10
刚刚
自由如天完成签到,获得积分10
1秒前
少女徐必成完成签到 ,获得积分10
2秒前
吕圆圆圆啊完成签到,获得积分10
3秒前
科目三应助承乐采纳,获得10
3秒前
向阳发布了新的文献求助10
3秒前
4秒前
Raki完成签到,获得积分10
5秒前
haly完成签到 ,获得积分10
7秒前
demoestar完成签到 ,获得积分10
7秒前
hero_ljw完成签到,获得积分10
7秒前
田様应助梅雨季来信采纳,获得10
7秒前
Maria完成签到,获得积分10
10秒前
jj完成签到,获得积分10
10秒前
华仔应助无限的寄真采纳,获得10
10秒前
学呀学完成签到 ,获得积分10
10秒前
NexusExplorer应助QQ采纳,获得10
10秒前
研友_VZG7GZ应助沈归尘采纳,获得10
10秒前
genhao1完成签到,获得积分10
11秒前
雨纷纷完成签到,获得积分10
11秒前
adagio完成签到,获得积分10
12秒前
13秒前
宇文书翠完成签到,获得积分10
14秒前
Emily完成签到,获得积分10
14秒前
铁甲小杨完成签到,获得积分10
15秒前
承乐发布了新的文献求助10
16秒前
优雅友蕊完成签到,获得积分10
16秒前
yes完成签到 ,获得积分10
16秒前
柔弱的海莲完成签到 ,获得积分10
17秒前
ZeSheng完成签到,获得积分10
18秒前
赵念婉完成签到,获得积分10
19秒前
传奇3应助向阳采纳,获得10
19秒前
共享精神应助jovrtic采纳,获得10
20秒前
21秒前
熙梓日记完成签到,获得积分10
22秒前
葛藟萦藤完成签到,获得积分10
23秒前
碧蓝可乐完成签到,获得积分10
24秒前
沈归尘发布了新的文献求助10
26秒前
源来是洲董完成签到,获得积分10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839