3-D Building Instance Extraction From High-Resolution Remote Sensing Images and DSM With an End-to-End Deep Neural Network

端到端原则 计算机科学 遥感 人工神经网络 人工智能 萃取(化学) 高分辨率 图像分辨率 深度学习 特征提取 计算机视觉 模式识别(心理学) 地质学 色谱法 化学
作者
Dawen Yu,Shunping Ji,Shiqing Wei,Kourosh Khoshelham
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3383432
摘要

Three-dimensional (3D) building models play a vital role in numerous applications including urban planning and smart cities. Recent 3D building modeling methods either rely heavily on available manaually-collected footprint reference or hardly reach real automation on par with manual editing. To approach the automated extraction of instance-level 3D buildings at Level of Detail (LoD) 1, we introduce an innovative end-to-end 3D building instance segmentation model. This model predicts accurate contours and heights of individual buildings simultaneously using ortho-rectified high-resolution remote sensing images and Digital Surface Models (DSMs), getting rid of additional reference data and impirical parameter settings. Firstly, we propose an Anchor-Free Multi-head building extraction network (AFM) tailored for extracting 2D building contours. AFM incorporates a full-resolution, long-range correlation boosted global mask prediction branch along with anchor-free bounding box generation, as well as a newly developed online hard sample mining (OHSM) training procedure based on uncertainty analysis to emphasize error-prone positions in locating building contours. Subsequently, we incorporate a height prediction component to AFM in order to derive accurate building height information, thus creating the comprehensive 3D building extraction model referred to as AFM-3D. The two-stage AFM-3D operates by initially predicting 3D cube proposals, followed by generating refined 3D prismatic models (LoD1 models) for each proposal. Thorough experimentation across different datasets demonstrates the superior performance of AFM and AFM-3D. A significant enhancement of 6.4% quality score is observed on the urban 3D dataset in comparison to recent methods. In addition to the proposed novel methodology, we compare anchor-based and anchor-free bounding box generation mechanisms for remote sensing data, explore pixel-based and contour-based segmentation strategies, evaluate learning-based and empirical height estimation methods, and discuss the indispensability of DSM data in 3D building instance extraction. These analyses yield valuable insights that contribute to the progression of 3D building extraction research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱友卉应助小赵采纳,获得20
刚刚
点点完成签到,获得积分10
1秒前
科研通AI2S应助11采纳,获得10
3秒前
情怀应助JERRI采纳,获得10
5秒前
6秒前
liweiDr发布了新的文献求助10
6秒前
6秒前
暖宝宝发布了新的文献求助30
6秒前
Ava应助晚云烟月采纳,获得10
7秒前
龙虾发票发布了新的文献求助10
9秒前
karL完成签到,获得积分10
10秒前
赘婿应助丢丢采纳,获得10
11秒前
11秒前
Vesperus发布了新的文献求助20
11秒前
啦啦完成签到 ,获得积分10
13秒前
14秒前
14秒前
17秒前
彭于晏应助田一点采纳,获得10
18秒前
18秒前
无心的笑蓝完成签到,获得积分10
19秒前
zyx关闭了zyx文献求助
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
Hello应助点点采纳,获得10
21秒前
24秒前
24秒前
晚夜微雨发布了新的文献求助10
25秒前
LRK发布了新的文献求助10
25秒前
Vesperus完成签到,获得积分20
25秒前
自由文博完成签到 ,获得积分10
25秒前
丢丢发布了新的文献求助10
26秒前
27秒前
桐桐应助阿尼亚采纳,获得10
27秒前
28秒前
29秒前
陶醉的婴发布了新的文献求助10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102