已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3-D Building Instance Extraction From High-Resolution Remote Sensing Images and DSM With an End-to-End Deep Neural Network

端到端原则 计算机科学 遥感 人工神经网络 人工智能 萃取(化学) 高分辨率 图像分辨率 深度学习 特征提取 计算机视觉 模式识别(心理学) 地质学 色谱法 化学
作者
Dawen Yu,Shunping Ji,Shiqing Wei,Kourosh Khoshelham
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3383432
摘要

Three-dimensional (3D) building models play a vital role in numerous applications including urban planning and smart cities. Recent 3D building modeling methods either rely heavily on available manaually-collected footprint reference or hardly reach real automation on par with manual editing. To approach the automated extraction of instance-level 3D buildings at Level of Detail (LoD) 1, we introduce an innovative end-to-end 3D building instance segmentation model. This model predicts accurate contours and heights of individual buildings simultaneously using ortho-rectified high-resolution remote sensing images and Digital Surface Models (DSMs), getting rid of additional reference data and impirical parameter settings. Firstly, we propose an Anchor-Free Multi-head building extraction network (AFM) tailored for extracting 2D building contours. AFM incorporates a full-resolution, long-range correlation boosted global mask prediction branch along with anchor-free bounding box generation, as well as a newly developed online hard sample mining (OHSM) training procedure based on uncertainty analysis to emphasize error-prone positions in locating building contours. Subsequently, we incorporate a height prediction component to AFM in order to derive accurate building height information, thus creating the comprehensive 3D building extraction model referred to as AFM-3D. The two-stage AFM-3D operates by initially predicting 3D cube proposals, followed by generating refined 3D prismatic models (LoD1 models) for each proposal. Thorough experimentation across different datasets demonstrates the superior performance of AFM and AFM-3D. A significant enhancement of 6.4% quality score is observed on the urban 3D dataset in comparison to recent methods. In addition to the proposed novel methodology, we compare anchor-based and anchor-free bounding box generation mechanisms for remote sensing data, explore pixel-based and contour-based segmentation strategies, evaluate learning-based and empirical height estimation methods, and discuss the indispensability of DSM data in 3D building instance extraction. These analyses yield valuable insights that contribute to the progression of 3D building extraction research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kyfbrahha完成签到 ,获得积分10
2秒前
拼搏的似狮完成签到,获得积分10
3秒前
着急的语海完成签到,获得积分10
5秒前
于清绝完成签到 ,获得积分10
6秒前
qianchimo完成签到 ,获得积分10
13秒前
xiemeili完成签到 ,获得积分10
14秒前
Osiris完成签到,获得积分10
15秒前
16秒前
17秒前
Diligency完成签到 ,获得积分10
17秒前
22秒前
飞翔的霸天哥应助emm采纳,获得30
22秒前
houfei发布了新的文献求助10
23秒前
26秒前
27秒前
chenyuns发布了新的文献求助20
27秒前
冰西瓜完成签到 ,获得积分10
34秒前
尘尘完成签到,获得积分10
37秒前
似水流年完成签到 ,获得积分10
38秒前
jhlz5879完成签到 ,获得积分10
38秒前
Jessie发布了新的文献求助30
39秒前
chenyuns发布了新的文献求助10
45秒前
krajicek完成签到,获得积分10
47秒前
棉袄完成签到 ,获得积分10
47秒前
aiiLuX完成签到 ,获得积分10
56秒前
晨云完成签到,获得积分10
56秒前
Dobby发布了新的文献求助10
59秒前
撒撒188完成签到,获得积分20
59秒前
李健飞完成签到 ,获得积分10
1分钟前
称心的语梦完成签到,获得积分10
1分钟前
1分钟前
撒撒188发布了新的文献求助10
1分钟前
九天发布了新的文献求助10
1分钟前
昌莆完成签到,获得积分10
1分钟前
Cupid完成签到,获得积分10
1分钟前
1分钟前
852应助Dobby采纳,获得10
1分钟前
张佳明完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085205
求助须知:如何正确求助?哪些是违规求助? 2738111
关于积分的说明 7548402
捐赠科研通 2387728
什么是DOI,文献DOI怎么找? 1266084
科研通“疑难数据库(出版商)”最低求助积分说明 613281
版权声明 598492