3-D Building Instance Extraction From High-Resolution Remote Sensing Images and DSM With an End-to-End Deep Neural Network

端到端原则 计算机科学 遥感 人工神经网络 人工智能 萃取(化学) 高分辨率 图像分辨率 深度学习 特征提取 计算机视觉 模式识别(心理学) 地质学 化学 色谱法
作者
Dawen Yu,Shunping Ji,Shiqing Wei,Kourosh Khoshelham
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3383432
摘要

Three-dimensional (3D) building models play a vital role in numerous applications including urban planning and smart cities. Recent 3D building modeling methods either rely heavily on available manaually-collected footprint reference or hardly reach real automation on par with manual editing. To approach the automated extraction of instance-level 3D buildings at Level of Detail (LoD) 1, we introduce an innovative end-to-end 3D building instance segmentation model. This model predicts accurate contours and heights of individual buildings simultaneously using ortho-rectified high-resolution remote sensing images and Digital Surface Models (DSMs), getting rid of additional reference data and impirical parameter settings. Firstly, we propose an Anchor-Free Multi-head building extraction network (AFM) tailored for extracting 2D building contours. AFM incorporates a full-resolution, long-range correlation boosted global mask prediction branch along with anchor-free bounding box generation, as well as a newly developed online hard sample mining (OHSM) training procedure based on uncertainty analysis to emphasize error-prone positions in locating building contours. Subsequently, we incorporate a height prediction component to AFM in order to derive accurate building height information, thus creating the comprehensive 3D building extraction model referred to as AFM-3D. The two-stage AFM-3D operates by initially predicting 3D cube proposals, followed by generating refined 3D prismatic models (LoD1 models) for each proposal. Thorough experimentation across different datasets demonstrates the superior performance of AFM and AFM-3D. A significant enhancement of 6.4% quality score is observed on the urban 3D dataset in comparison to recent methods. In addition to the proposed novel methodology, we compare anchor-based and anchor-free bounding box generation mechanisms for remote sensing data, explore pixel-based and contour-based segmentation strategies, evaluate learning-based and empirical height estimation methods, and discuss the indispensability of DSM data in 3D building instance extraction. These analyses yield valuable insights that contribute to the progression of 3D building extraction research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助潘继坤采纳,获得10
刚刚
1秒前
2秒前
无花果应助11111采纳,获得10
3秒前
完美的钢笔完成签到,获得积分10
3秒前
wx0816发布了新的文献求助10
3秒前
4秒前
Lucas应助雪山飞虹采纳,获得10
4秒前
快乐的友易完成签到,获得积分20
5秒前
5秒前
无奈敏发布了新的文献求助10
5秒前
今天发CNS了嘛完成签到,获得积分10
6秒前
6秒前
CodeCraft应助善良的傲晴采纳,获得30
6秒前
缓慢煎蛋完成签到,获得积分10
6秒前
小茶发布了新的文献求助10
6秒前
骑着蜗牛追流星完成签到,获得积分10
7秒前
任性乘云发布了新的文献求助10
7秒前
Rsoup完成签到,获得积分10
7秒前
浮游应助苏su采纳,获得10
8秒前
11111完成签到,获得积分10
8秒前
8秒前
搜集达人应助icey采纳,获得10
8秒前
俗丨完成签到,获得积分10
10秒前
10秒前
Rsoup发布了新的文献求助10
10秒前
领导范儿应助Promise采纳,获得10
11秒前
小周发布了新的文献求助10
11秒前
开整吧完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
orixero应助希希采纳,获得10
14秒前
大胆妖精发布了新的文献求助10
15秒前
qqqyy完成签到,获得积分0
15秒前
水水加油完成签到 ,获得积分10
16秒前
why11starry发布了新的文献求助10
17秒前
19秒前
20秒前
骤雨时晴完成签到 ,获得积分10
20秒前
酷波er应助唠叨的又菡采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337