An Approach for Human Posture Recognition Based on the Fusion PSE-CNN-BiGRU Model

人工智能 卷积神经网络 计算机科学 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 深度学习 集合(抽象数据类型) 特征提取 计算机视觉 人工神经网络 哲学 语言学 程序设计语言
作者
Cao Xiao,X. Wang,Xueqing Geng,Donghui Wu,Hiroshi An
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:140 (1): 385-408
标识
DOI:10.32604/cmes.2024.046752
摘要

This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit (PSE-CNN-BiGRU) fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly, the deep convolutional network is integrated with the Mediapipe framework to extract high-precision, multi-dimensional information from the key points of the human skeleton, thereby obtaining a human posture feature set.Thereafter, a double-layer BiGRU algorithm is utilized to extract multi-layer, bidirectional temporal features from the human posture feature set, and a CNN network with an exponential linear unit (ELU) activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore, a squeeze and excitation networks (SENet) module is introduced to adaptively learn the importance weights of each channel, enhancing the network's focus on important features.Finally, comparative experiments are performed on available datasets, including the public human activity recognition using smartphone dataset (UCIHAR), the public human activity recognition 70 plus dataset (HAR70PLUS), and the independently developed home abnormal behavior recognition dataset (HABRD) created by the authors' team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%, 89.42%, and 98.90%, respectively, which are 5.24%, 5.83%, and 3.19% higher than the average accuracy of the five models proposed in the comparative literature, including CNN, GRU, and others.The F1-score for abnormal posture recognition reaches 98.84% (heartache), 97.18% (fall), 99.6% (bellyache), and 98.27% (climbing) on the self-built HABRD dataset, thus verifying the effectiveness, generalization, and robustness of the proposed model in enhancing human posture recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chuyu完成签到,获得积分10
3秒前
可乐发布了新的文献求助10
6秒前
孙伟伟完成签到,获得积分10
6秒前
Tycoon发布了新的文献求助10
9秒前
9秒前
三十三发布了新的文献求助20
10秒前
花生壳完成签到,获得积分20
12秒前
master完成签到,获得积分10
13秒前
asd关闭了asd文献求助
14秒前
活泼之云发布了新的文献求助10
14秒前
15秒前
16秒前
星辰大海应助许大脚采纳,获得10
16秒前
可乐完成签到,获得积分10
18秒前
等等完成签到,获得积分10
18秒前
Ray发布了新的文献求助10
19秒前
唐牛宝完成签到,获得积分10
19秒前
花生壳发布了新的文献求助10
19秒前
淡然子轩完成签到,获得积分10
19秒前
虞美人完成签到 ,获得积分10
19秒前
等等发布了新的文献求助10
20秒前
wawaa完成签到,获得积分10
21秒前
zshjwk18完成签到,获得积分10
26秒前
29秒前
李爱国应助花生壳采纳,获得10
29秒前
杨金城发布了新的文献求助10
34秒前
wyp完成签到,获得积分10
35秒前
37秒前
39秒前
Senmin完成签到 ,获得积分10
40秒前
Fan关注了科研通微信公众号
42秒前
43秒前
wyp发布了新的文献求助10
45秒前
46秒前
英姑应助黙宇循光采纳,获得10
46秒前
delect完成签到,获得积分10
48秒前
48秒前
宁少爷应助ccccc采纳,获得40
51秒前
delect发布了新的文献求助10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129