An Approach for Human Posture Recognition Based on the Fusion PSE-CNN-BiGRU Model

人工智能 卷积神经网络 计算机科学 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 深度学习 集合(抽象数据类型) 特征提取 计算机视觉 人工神经网络 哲学 语言学 程序设计语言
作者
Cao Xiao,X. Wang,Xueqing Geng,Donghui Wu,Hiroshi An
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:140 (1): 385-408
标识
DOI:10.32604/cmes.2024.046752
摘要

This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit (PSE-CNN-BiGRU) fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly, the deep convolutional network is integrated with the Mediapipe framework to extract high-precision, multi-dimensional information from the key points of the human skeleton, thereby obtaining a human posture feature set.Thereafter, a double-layer BiGRU algorithm is utilized to extract multi-layer, bidirectional temporal features from the human posture feature set, and a CNN network with an exponential linear unit (ELU) activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore, a squeeze and excitation networks (SENet) module is introduced to adaptively learn the importance weights of each channel, enhancing the network's focus on important features.Finally, comparative experiments are performed on available datasets, including the public human activity recognition using smartphone dataset (UCIHAR), the public human activity recognition 70 plus dataset (HAR70PLUS), and the independently developed home abnormal behavior recognition dataset (HABRD) created by the authors' team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%, 89.42%, and 98.90%, respectively, which are 5.24%, 5.83%, and 3.19% higher than the average accuracy of the five models proposed in the comparative literature, including CNN, GRU, and others.The F1-score for abnormal posture recognition reaches 98.84% (heartache), 97.18% (fall), 99.6% (bellyache), and 98.27% (climbing) on the self-built HABRD dataset, thus verifying the effectiveness, generalization, and robustness of the proposed model in enhancing human posture recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助ouyggg采纳,获得10
1秒前
冰冰发布了新的文献求助10
1秒前
背后的桐发布了新的文献求助10
2秒前
小二郎应助lzx采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
昏睡的蟠桃应助杨旭采纳,获得100
4秒前
Change_Jing完成签到,获得积分10
4秒前
4秒前
沉海发布了新的文献求助30
5秒前
5秒前
杭啊发布了新的文献求助10
6秒前
曾经电源完成签到,获得积分10
7秒前
hx完成签到 ,获得积分10
7秒前
CAOHOU应助满眼星辰采纳,获得10
7秒前
8秒前
24816848完成签到,获得积分10
8秒前
陈道哥完成签到 ,获得积分10
8秒前
9秒前
三七完成签到,获得积分10
9秒前
zifeimo发布了新的文献求助10
9秒前
科研通AI2S应助冰冰采纳,获得10
10秒前
练习时长两年半应助冰冰采纳,获得10
10秒前
Happyness应助superspace采纳,获得30
10秒前
yuHS完成签到,获得积分10
10秒前
10秒前
quan发布了新的文献求助10
11秒前
12秒前
丫丫完成签到 ,获得积分10
12秒前
12秒前
阿嘉完成签到,获得积分10
12秒前
13秒前
彳亍完成签到,获得积分10
13秒前
断数循环完成签到,获得积分10
13秒前
阳光女孩完成签到,获得积分10
13秒前
liujj完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635