Towards robust classification of multi-view remote sensing images with partial data availability

遥感 计算机科学 地质学
作者
Maofan Zhao,Qingyan Meng,Yan Wang,Linlin Zhang,Xinli Hu,Wenxu Shi
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:306: 114112-114112 被引量:2
标识
DOI:10.1016/j.rse.2024.114112
摘要

Utilizing remote sensing to monitor and obtain the land use information is crucial for sustainable development goals (SDGs), including sustainable agriculture, urbanization processes, land reclamation, etc. The development of remote sensing big data and deep learning has greatly promoted the use of multi-source images to understand land use. However, in practical applications, missing data often occurs due to high cost and environmental limitation. Therefore, we propose a framework which can towards robust classification of multi-view remote sensing images with partial data availability. First, we construct a student model and teacher model mutual learning framework. In particular, we promote the consistency of student model and teacher model which enhances robustness under missing view and further improves performance under complete views. Second, we propose a parameter-free channel & spatial attention (PFCSA) module embedded in the image encoders, which allows the architecture with three encoders to balance performance and lightweight. Further, the cross-view attention fusion (CAF) module is designed to enhance the fusion of multi-view images. The experiments based on global data show that the proposed method can utilize multi-views more effectively than common fusion strategies. Our method also ensures robustness against missing view compared to other methods. And we reveal the effectiveness of each proposed strategies. In addition, the contribution of different views and the mechanism of the model under missing view are analyzed. The proposed method in this study can be used to generate land use and its derived geographic information products on a global scale (including different natural and development regions), and further serve the realization of global SDGs. The code will be publicly available at https://github.com/mfzhao1998/multi_view_incomplete_learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
土豪的忆梅完成签到 ,获得积分10
1秒前
zzzzz完成签到,获得积分10
1秒前
JAJ发布了新的文献求助10
1秒前
传奇3应助汤圆圆儿采纳,获得10
1秒前
ZWZ完成签到,获得积分10
1秒前
1秒前
岸边渔客发布了新的文献求助10
1秒前
火火完成签到,获得积分20
2秒前
科研通AI2S应助一杯双皮奶采纳,获得10
2秒前
软土豆丝发布了新的文献求助10
3秒前
3秒前
3秒前
甜芋发布了新的文献求助30
4秒前
科研通AI5应助动听的靖琪采纳,获得50
4秒前
jjjj发布了新的文献求助10
4秒前
wanci应助科研废物采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研小王发布了新的文献求助10
5秒前
风中子轩发布了新的文献求助15
5秒前
5秒前
5秒前
zywoo完成签到,获得积分10
6秒前
6秒前
Jasper应助zyq采纳,获得10
6秒前
chemlixy完成签到 ,获得积分10
7秒前
jwx应助瑶瑶采纳,获得10
7秒前
UU发布了新的文献求助10
7秒前
迟大猫应助张张张采纳,获得10
8秒前
8秒前
he完成签到 ,获得积分10
8秒前
yao完成签到,获得积分10
8秒前
Jasper应助科研通管家采纳,获得10
9秒前
lancet完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
优美的风完成签到,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
李健应助科研通管家采纳,获得10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836